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Reconciling salinity data from different platforms is an important component of a 
modern salinity observing system  

GO-SHIP 
1999 - …

Argo 
2003 - …

SMOS 
2010 - …

Aquarius 
2011 - 2015

SMAP 
2015 - …

Aquarius + Argo (OI)
Aquarius + SMOS +  

NODC in situ (OI)
SMOS + Argo + Other obs + 

GCM (DA)



Based on different methodologies, blended products offer various advantages – 
choose according to your applications

Stammer et al., 2016

Examples: 

1. Climatology, short-term forecast: 

 OI, KF, 3Dvar (Fukumori 2002) 

 Data 1 + Data 2 + …. 

1. Climate studies: 

 Adjoint, 4Dvar (Wunsch & Heimbach 2013) 

 Data 1 + Data 2 + ... + GCM (F=ma)
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Figure 1
Schematic of the differences between filters and smoothers in producing an estimated state.

make different compromises between the fidelity and range of temporal and spatial scales to be
represented and the degree of dynamical consistency sought in the solution. Understanding the
substantial difference in the resulting solutions (Figure 1) is essential for their appropriate use.
As can be inferred from the figure and described in more detail below, DA usually minimizes (in a
least square sense) the prediction error, whereas SE minimizes an error over the entire time (see
also Sorensen 1970). In the following, we describe two types of approaches typical for ODA and
OSE: filters and smoothers.

2.2.1. Filters. Filter approaches sequentially estimate the ocean state at discrete points in time
(so-called analysis steps) by merging present observations with the model forecast (or background)
state, which, as a result of previous assimilation cycles, implicitly contains information from past
observations. The introduction of the analysis increment that corrects the model state may violate
conservation principles (as embedded in the first principles of the ocean circulation) and often may
introduce discontinuities in the time evolution of the model trajectory. The use of incremental
analysis updating (Bloom et al. 1996) can remedy discontinuities to some extent by transforming
the increment into a forcing that distributes the correction over a particular period; the corrections
remain dynamically unbalanced, however. Nevertheless, the resulting fields are consistent with
the prescribed model forecast and data error covariances at this moment, and applications (e.g.,
for skillful forecasting) usually justify this approach. Approaches used in oceanography encompass
three major avenues: OI, three-dimensional variational assimilation (3D-VAR), and various forms
of the KF (Kalman 1960); the first two approaches can be shown to be approximations of the latter.

OI is the simplest form of an optimal least squares estimator (e.g., Gandin 1963). For each ob-
servation, a correction of the model by observations is defined based on the difference between the
observation and the corresponding model simulation (referred to as the innovation). Interpolated
values are then calculated from a linear combination of the innovations weighted by the inverse
of the sum of the estimated observation error variance and the background error variance at ob-
servation points. OI provides an optimal instantaneous estimate for a particular set of constant
weights; however, the OI solution is suboptimal over the entire measurement period because a
time dimension is absent from the problem it solves (e.g., Fukumori 2002).

The KF, which is likewise a minimum variance estimator developed for solving prediction prob-
lems, has the advantage that it evolves the model state error covariance matrix in time according to
the underlying dynamics of the numerical model and the assumed error covariance matrix of the nu-
merical model. In practice, propagating the model state error covariance matrix is associated with a
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ECCO solution reconciles salinity information from multiple platforms in a way that 
makes the most physical sense 
Main advantages and recent improvements: 
1. Uses information from a variety of sources  

◦ Salinity data: Aquarius, Argo, CTD (new Arctic T/S), ITP 
◦ Other data: temperature, altimetry, sea-ice concentration, GRACE 

2. Improved modeling component 
◦ Reduced biases and temporal correlations 
◦ Realistic representation of freshwater fluxes 
◦ Revised sea-ice model  

3. Obeys conservation statements 
◦ Consistent 3D ocean circulation, salt/freshwater transports, and 

forcing fields 
◦ Closed budget diagnostic tools    

4. Close to observations within specified data errors

Time-varying Aquarius error 

Time-mean Aquarius error 

Vinogradova et al., 2014



Misfits of the ECCO solution to surface salinity data are mostly within data 
uncertainty  

ECCO misfits with surface salinity data (satellite + in situ)



Examples:

 Surface salinity in the last 2 decades: 

 1992 – 2015 (animation)

 Multi-platform salinity estimate from ECCOv4 r3      
www.ecco-group.org/



Examples: inter-annual variability in surface salinity and surface freshwater fluxes 
(including sea-ice dynamics)

Surface salinity E-P-R 



Examples: vertically-integrated, global mean salinity  

Global change = -5e-4 psu / 20 years  

GRACE-inferred =  -4e-4 psu / 20 years  



ECCO can be used as a tool to estimate added value of satellite salinity to in situ platforms, 
including coastal areas with poor Argo coverage
Annual data coverage: Argo locations and trajectories during 2012 (4328 floats) and standard deviation in Aquarius v4.0 SSS  



EXPLORE ECCO SALINITY
DOWNLOAD LATEST SOLUTION:  WWW.ECCO-GROUP.ORG 
      Forget et al., 2015 

RUN CUSTOMIZED ECCO RUNS:  DOI: 10.5281/ZENODO.199307 
ECCO IN THE CLOUD - BE A MODELER!  HTTPS://GITHUB.COM/CAMCLIMATE/ECCO-CLOUD/ 

      Vinogradova et al., 2017, review  
      

http://www.ecco-group.org/
https://github.com/CamClimate/ECCO-cloud/
https://github.com/CamClimate/ECCO-cloud/
https://github.com/CamClimate/ECCO-cloud/

