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Summary of satellite SSS achievements
& ongoing challenges

See Monday presentations by Gary Lagerloef & Nicolas Reul:

* Oceanic features/processes (eddies, fronts, river plumes,
Rossby waves, TIWs, SSSmax, SSSmin, etc.).

* Linkages with the water cycle (with atmosphere and land).
e Relationships with climate variability (MJO, 10D, ENSO, etc.).
* Emerging biogeochemical applications.

* Filling gaps in SSS observations (spatiotemporal scales & regions
not resolved or inadequately sampled by in-situ platforms).



Three major requirements advocated by community
response to Decadal Survey

* Improving high-latitude satellite SSS accuracies.
* Enhancing spatial resolution and getting closer to the coasts.

e Continuity of satellite SSS missions.
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Improving high-latitude satellite SSS accuracies

Rationales:

* Much larger uncertainties of high-latitude satellite SSS.
* Lack of in-situ salinity measurements, esp. in the Arctic Ocean.

* |Importance of high-latitude SSS.



STD of SSS Difference for Aquarius - Argo-SIO & Argo-SIO vs. Argo-UH
for dlfferent spatial scales (Lee 2016)
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Zonally averaged STD of SSS differences for Aquarius vs. Argo-SIO & Argo-SIO vs.
Argo-UH for different spatial scales (seasonal: left, non-seasonal: right)
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Aquarius-Argo consistency in the tropics/subtropics is

High-lat satellite SSS uncertainties larger by a few times
due to poor sensitivity of L-band T, to SSS in cold waters.
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Importance of improving high-latitude satellite SSS

Significant/dominant roles of salinity on density/stratification/steric height.
Implications to water-mass formation.

Monitoring Arctic freshwater pathways, redistribution, and interactions
with subpolar North Atlantic.

Potential effects on AMOC and the related transports (heat, freshwater,
carbon, nutrients, ...).
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Applicability of L-band SSS at high-latitude oceans

* Challenging for the Southern Ocean:
e.g., the SSS gradient across the SAF & PF is below L-band SSS accuracy.
* Some potential for the Arctic Ocean due to the large SSS signals.

Salinity at 20 m (2012/13 - 1970s)

Timmermans et al. (2014) and NOAA Arctic Report Card 2013 Update.
Gradient estimates provided by Mike Steele of APL, University of Washington



The value of adding P-band radiometry:

T at P-band has ~ 3 times better sensitivity to SSS than L-band
L-band and P-band sensitivties
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Additional values of P-band radiometry

* Improving sea ice thickness
measurements by complementing radar
and L-band radiometry measurements

* Better thickness measurements for 15t-
year ice in turn help improve SSS
retrievals near sea ice.

e Other values: measurements of ice shelf
thickness, land applications (e.g., soil
moisture, evapotranspiration,
vegetation, ...).
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Three major requirements advocated by community
response to Decadal Survey

* Improving high-latitude satellite SSS accuracies.
» Enhancing spatial resolution and getting closer to the coasts.

e Continuity of satellite SSS missions.



Enhancing spatial resolution and
getting closer to the coasts

Meso- & sub-mesoscale ocean dynamics (e.g., presentation
by Amala Mahadevan).

Linkage of ocean and terrestrial element of the water cycle.
Importance to biogeochemistry.

Implications to large-scale changes (example in the next slide)



Large trend of halosteric height (freshening) in the

southeast Indian Ocean:
implications to multi-decadal variability & climate change
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SEIO freshening trend linked to possible changes in the
Maritime Continent region (Llovel and Lee 2015)

ey
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Enhanced precipitation in the Maritime Continent (VS’ effect)?
Enhanced ITF transport (V'S effect)? (e.g., Gordon et al. 2012)

Need good SSS in the Maritime Continent regions



Three major requirements advocated by community
response to Decadal Survey

* Improving high-latitude satellite SSS accuracies.
* Enhancing spatial resolution and getting closer to the coasts.

» Continuity of satellite SSS missions.



Continuity of satellite SSS missions

* Important for monitoring changes in the water cycle
(emphasized by many presentations in this WS, e.g., Durack...)

* Necessary for studying and predicting seasonal, interannual,
and decadal climate variability.

Launch | 10 11 12 13 14 15 16 17 18 19 20
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ASSIM_T,: baseline experiment, assimilation of all subsurface temperature data.
ASSIM_T,_SSS,c: assimilation of all subsurface temperature and in-situ salinity data.
ASSIM_T,_SSS,,: assimilation of all subsurface temperature and Aquarius SSS data.

The latter has higher correlation & lower RMSE wrt observed SST for lead times > 4 months.

Need long data record (covering many ENSO events) to establish
the robustness of impacts on prediction.



Other community advocacy for continuing satellite SSS

e US CLIVAR Phenomena, Observations, and Synthesis Panel.

* Tropical Pacific Observing System (TPOS) 2020, as part of the TP0O2020
“Backbone System”.

« WMO Integrated Global Observing Systems (WIGQOS) Vision for 2040, as
part of the “Backbone Component”.



Additional considerations of future satellite SSS missions

» Radio Frequency Interference (RFI) detection/mitigation.

* Retrieval algorithms (esp. corrections for contaminations by sea ice signals).
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e Orbit consideration (e.g., circular vs. elliptical orbits).

* Antenna technology (resolution vs. cost).
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mesoscale features and get close enough to the coasts and inland waters to
maximize the benefit for biogeochemistry?

WMO Integrated Global Observing Systems (WIGOS) Vision for 2040 stated
the need of satellite SSS as part of the “Backbone component”, with
sufficient resolutions to meet the need for coastal ocean/inland sea
applications, esp. for biogeochemistry. The related technology needs to be
developed.



Examples of ongoing technology development:
next two presentations by Shannon Brown and Sid Misra




