

Lagrangian Drifter Observations of Near-Surface Circulation and Sea Surface Salinity during SPURS-2

Verena Hormann & Luca Centurioni w/ Nikolai Maximenko & Yi Chao vhormann@ucsd.edu

Global Water Cycle

Distribution of salinity in the world ocean is a poorly understood part of the global water cycle, with different upperocean physics in evaporating and precipitating regimes

SPURS-2 Scientific Objectives

- ☐ "Where does the freshwater go?"
 - Investigating the effect of the large-scale circulation on the development and location of the salinity minimum, and the dispersion of patchy "puddles" of freshwater in the northeastern tropical Pacific
- "What impact will this horizontal and vertical variability have on the performance of satellite based measurements of sea surface salinity (SSS)?"
 - Measuring the horizontal variability of SSS on multiple spatial scales, and examining the impact of this horizontal variability on satellite-retrieved salinity

SVP/SVP-S Specifications

- Iridium with GPS (accuracy: ± 50 m)
- Drogue on/off sensor: strain gauge
- Lagrangian currents at 15 m
- Sea Surface Temperature (SST)
 - Thermistor: ± 0.05-0.1°C
- ☐ Salinity at 0.5 m
 - Standard sampling: every 30 min.
- ☐ SBE37-SI (unpumped, poisoned cell)
 - Conductivity: ± 0.0003 S/m
 - Temperature: ± 0.002°C
- ☐ Air pressure (optional): ± 0.5 hPa
- □ Endurance: ~ 1-2 yrs

SPURS-1 Drifter Experiment

Deployment of 88 SVP-S (red) and 56 SVP (blue) drifters in the subtropical North Atlantic

SVP-S Data Quality

- Averaging sampling mode introduced fresh bias in the salinity noise level
- Bias most likely due to air bubbles within the meauring cell

Quality Control

- Elimination of isolated salinity and temperature spikes
- Visual inspection of individual salinity measurements to manually remove the data noise
- Verification of drifter salinities against independent data sets and by drifter inter-comparisons

Quality-controlled drifter salinities in the SPURS-1 region, with reliable observations for up to one year

Next SVP-S Generation

 Revision of the sensor's sampling algorithm needed to enable onboard/real-time filtering of incorrect salinity measurements

2015 Drifter Experiment

Dedicated deployment of 36 (10) SVP-S (SVP) drifters in a tight array across a freshwater front in the Bay of Bengal

Hormann, Centurioni et al., 2016

SVP-S Performance

- Transmission of additional statistics as measure of data quality
- □ Inter-comparisons
 between salinity drifters
 confirm fresh events and
 build confidence in the
 revised sensor algorithm
- Observed salinity patches had amplitudes in excess of 1.5 psu

Salinity Variability

Autocorrelation analysis of high-resolution drifter salinities revealed space and time scales of less than 5 km and of the order of a few hours

SPURS-2 Concept

- SPURS-2 designed as a coordinated experiment to achieve sampling over a large spatial footprint
- Drifters provide an expanding context to observations at the central mooring site

Drifter Experiment

Particle simulations in SCUD model, and interactive "Drop-a-Drifter" website to plan deployments

2016/17 Deployments

Ongoing drifter releases largely organized in clusters of five have begun in June 2016 (10 SVP-S) from the R/V Lady Amber

Spatiotemporal Variability

- Drifters largely moved southeastward toward the coastline
- Pronounced
 variability in
 both SSS and
 SST, with
 saltier and
 colder waters in
 the northwest
 during winter

SSS Validation

- Verification of individual drifter salinities by intercomparisons with nearby drifters shows overall good agreement
- Drifter comparisons with remotely-sensed SMAP SSS are generally within the satellite's accuracy in the SPURS-2 region

SVP-S vs. SMAP

■ Statistics indicate
an overall positive
bias of SMAP SSS
compared to SVP-S
measurements in
the SPURS-2
region, with a
RMSE of 0.4 psu

Model-Data Comparison

SCUD velocities applied to 3 − 7-day segments of SPURS-2 drifter trajectories confirm the model's usefulness for planning drifter deployments

Seasonal Variability

Drifter velocities at 15-m depth binned at 1° x 1° for winter/spring and summer/fall seasons

Mean drifter currents show large seasonal differences in the SPURS-2 region, with both the SEC and NECC intensifying in summer/fall

Seasonal SSS & SST Cycles

Consistent with the seaonal ITCZ migration, the drifters indicate a SSS min. in fall and max. in winter/ spring

2016 SMAP Salinity

Seasonal
SSS cycle
around
SPURS-2
mooring
reproduced
by SMAP

Interannual Variability

Close to normal monthly wind forcing in 2016, but apparent differences in freshwater fluxes due to an earlier onset of the rainy season in 2016

Conclusions

- ☐ Targeted drifter deployments in key regions of the global water cycle to improve understanding of the role of near-surface currents in defining the salinity distribution
- Revised SVP-S algorithm successfully implemented in the Bay of Bengal and northeastern tropical Pacific
- 30 SVP-S plus 20 SVP drifters deployed in the SPURS-2 region yet
- Satellite SSS from SMAP generally overestimate SVP-S measurements in the SPURS-2 region
- Consistent with the ITCZ migration, SVP-S drifters resolve the seasonal SSS cyle near 10°N, 125° W with a minimum in fall and maximum in winter/spring

Outlook

- □ Continuing with regular SVP-S/SVP deployments from the R/V Lady Amber, and contributing to the 2017 R/V Roger Revelle cruise (4 CODE-style drifters for "puddle" experiment plus possibly a few SVP/SVP-S drifters)
- Quantifying horizontal salt fluxes (as done in SPURS-1) and kinematic properties (e.g., vorticity) as well as investigating details of observed fresh events (e.g., comparisons to rain)

Centurioni, Hormann et al., 2015

Hormann et al., 2015