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The salty subtropical regimes of the world ocean display significant differences. Evaporation alone is not sufficient to
explain the spatial and temporal characteristics of the salty subtropical regimes, the wind also shapes sea surface salinity
maximum (SSS-max), both at seasonal and inter annual time scales. However, even the combination of regional air-sea
water flux and the wind stress is insufficient to fully explain the SSS-max patterns. The SSS-max regimes are also
influenced by their place in the global ocean system. This is particularly relevant to the southern hemisphere SSS-max
regimes. The South Atlantic and the southern Indian Ocean SSS-max are affected by the Agulhas leakage around the
southern rim of Africa, as well as the deflection of the South Equatorial Current into the northern hemisphere as part of
AMOC. The southern Indian Ocean is also affected by the low SSS plume of Indonesian Throughflow water crossing the
Indian Ocean between 10 and 15°S. The super wide South Pacific seems to have two distinct regimes, the 'normal’
eastern SSS-max and the western regime shaped by a branch of the ITCZ in southern hemisphere. The difference of the
SSS-max regimes is a sensitive indicator of the ocean and climate systems.

Gordon, A. L., C. F. Giulivi, J. Busecke, F. M. Bingham (2015) “Similarities-and*-Differences Among Subtropical Surface Salinity Patterns”.
SPURS special issue of Oceanography, 28(1) 20-27 * Well OK, they are all salty
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I will focus on the South Atlantic SSS-max with some words about the south Indian SSS-max
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Water vapor:
§ North Atlantic to Pacific water vapor ~0.2 SV
§ South Atlantic to ACC

§ Arabian Sea to Bay of Bengal
§ SPCZ (polynesian island effect?)

In addition to the interocean advective links, there is interocean water vapor flux and rivers

South Atlantic water vapor flux: Gordon, A.L. & A. R. Piola (1983); Agulhas leakge: Gordon 1985, 1986

Central America Gap winds calculated Gordon and Giuilivi May 2014 from data: http://www.ecmwf.int/ Dee, D. P., et al.. (2011) The ERA-Interim
reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553-597. doi: 10.1002/q;.828



The sea surface salinity (SSS) displays fluctuations that are not solely in response to local air-

sea flux of freshwater, but also reflect ocean circulation and mixing processes.

See:  Yu, L.(2011), A global relationship between the ocean water cycle and near-surface salinity,
: J. Geophys. Res., 116, C10025, doi:10.1029/2010JC006937

Ponte, R. M. and N. T. Vinogradova (2016) An assessment of basic processes controlling
mean surface salinity over the global ocean. Geo.Phys.Letts doi: 10.1002/2016GL069857.

Gordon, A. L. (2016), The marine hydrological cycle: The ocean’s floods and droughts,
Geophys. Res. Lett. , 43, doi:10.1002/2016GL070279
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blurry atlas views of salinity, built from

many decades of data gathering, depicting
a climatology that never exists at all points
at the same time, have now beed replaced

Near synpotic global views of the sea surface
salinity (SSS) from orbiting satellites, opening

views of the marine hyrdological cycle From Ponte & Vinogradova

Figure 2. Time averaged salinity tendency (S’) and advective, diffusive, and
See:  Schmitt, R.W. (2008). Salinity and the global water cycle. forcing fluxes, as in equation (1). White contour lines mark the zero value.
Oceanography 21(1):12-19. Note the different scale for S’ term.
Schanze, J. J., R. W. Schmitt, and L. L. Yu (2010), The global
oceanic fresh-water cycle: A state-of-the-art-quantification, J. Mar.
Res., 68 (3-4), 569595, d0i:10.1357/002224010794657164.
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Surface circulation: the subtropical anticyclonic and tropical cyclonic

bounded by zonal currents in the tropics and subantarctic regions, with
injection of Indian Ocean Water via the Agulhas leakage and loss to the
North Atlantic, the South Atlantic enables the North Atlantic reach into

the global ocean: AMOC.

1.

Maximum westerlies

The Agulhas leakage: injection of
Indian Ocean water into S.Atl;

The SEC bifurcation: regulates the
inter-hemispheric exchange vs.
recirculation;

The Brazil-Malvinas confluence:
regulates the return flow to the East
[Atl/Ind ‘super-gyre’];

Tropical ‘Angola dome’ cyclonic gyre;

SSS-max core, a response to larger
scale and to regional air-sea fluxes
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Time series of SSS anomaly relative (“peakyness”) to the basin sal reference. S Atlantic largest.
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Wind stress curl within the subtropical gyre center (15-30S, 35W-5E), NOAA NCEP-NCAR CDAS-1 monthly surface wind
stress and SSSb anomalies (lagged 4 months).
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Arnold this is the wind stress curl for the box, in green the series we already
had, in blue the updated. I'm using NCEP data from IRl (same as before) the
magnitudes are different, but the patterns are the same (they are constantly
updating the data). There is a different behavior for 2016. The amplitude

(peak to peak) is reduced, but overall increasing throughout the year, the
values for the end of 2016 are very high.

2016 curl spends more time in small values: Bif northward
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Riihs, S., et al (2013), Advective timescales and pathways of Agulhas leakage, Geophys. Res.
Lett., 40, doi:10.1002/grl.50782.): results from a Lagrangian analysis were evaluated, with
virtual floats advected within an eddy-permitting ocean model (ORCA025).

~6- 7 years from Agulhas Leakage (AL) to North Brazil (coastal) Current (NBC)
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2007-2009 increase in Agulhas Leakage. Is there an advective signal of this salt
injection across the South Atlantic subtropical gyre? Maybe...
~1to 2 yrlag between Agulhas Leakage and North Brazil Current SSS anomalies,
~4 year AL to BZ SSS anomalies?
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Sea surface salinity anomalies. Time series of SSS anomalies (S5Sa) for the color boxes shown on the SSS map. Aquarius salinity (v4
L3) times series (black) with Argo surface salinity data (gray). The dashed lines represent the annual min/max for the Argo dataset. The
thick solid lines represent a 12-month running mean. Note the difference in range of the SSSa axis.

Might agulhas eddies deliver the AL message to the BZ. The eddy
westwarddrift may agree with the 4 year lag Byrne et al...



2007-20089 increase in Agulhas Leakage. Is there an advective signal of this salt
injection across the South Atlantic subtropoical gyre? Maybe...
~1to 2 yrlag between Agulhas Leakage and North Brazil Current SSS anomalies,
~4 year AL to BZ SSS anomalies?
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Sea surface salinity anomalies. Time series of SSS anomalies
(SSSa) for the color boxes shown on the SSS map. Aquarius
salinity (v4 L3) times series (black) with Argo surface salinity
data (gray). The dashed lines represent the annual min/max for
the Argo dataset. The thick solid lines represent a 12-month
running mean. Note the difference in range of the SSSa axis.
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2 year lag is too fast? Riihs, S., et al (2013) has 6- 7 years

To paraphrase what was stated above: sea surface salinity
displays fluctuations that are not solely in response to
advection, but also local air-sea flux of freshwater and mixing

processes. i.e. its complicated, but near synoptic views of SSS
and other satellite based and in-situ (Argo, drifters) are allowing
guantitative disection of these governing factors and associated
marine hydrographic cycle.

Research in Progress...




Southern Indian SSS-max
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See: Melzer, B. A., and B. Subrahmanyam (2015), Investigating decadal changes in SSS in
oceanic subtropical gyres, GRL, 42, 7631-7638,

Interocean advective ’vise’: low SSS along 10-15°S fed
by the Indonesian Throughflow (ITF) and export of low
SSS from eastern Bay of Bengal: advected southward
by Ekman transport; and low SSS South Atlantic water
advected eastward south of 40°S [northern limbs of

the ACC], that also enables injection of low SSS by
Ekman transport into the evaporative zone.

Annual SSS (Aquarius, SMAP), evaporation minus precipitation and Ekman transport
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5 x10° Isohaline area: 35.772
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Time series from Fred Bingham, 20 May 2016

Southern Indian SSS-max area seasonal cycle, maximum in austral summer — July-Aug. There also appears to be a secular
trend of increasing area. In latitude, there is also distinct variability: The farthest south is reached in austral summer.
The latiude variation is small~0.5°. Southweard shift 2011-2015?

Changes in the ‘Vise’ (ITF, ACC)?; Wind; E-P Ekman patterns? Relvance to AMOC and Agulhas Leakage
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The subtropical regimes are similar in that they are salty, but that’s about it. The differences of the SSS-max regimes

are a sensitive indicator of the ocean and climate systems.
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