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Research	Objectives
• Understand	upper	ocean	mixing	processes	occurring	under	

stable	conditions	arising	from	diurnal	warming	and	
freshwater	flux	variability

• SPURS	1
– Obtain	microstructure	turbulence	measurements	to	document	

mixing	processes	operating	within	the	salinity	maximum	region
– Combine	with	buoy	and	other	data

• SPURS	2
– Measure	the	air-sea	fluxes	of	heat,	moisture,	and	momentum	

from	a	ship-based	platform	
– Measure	atmospheric	boundary	layer	profiles	of	pressure,	

temperature,	and	humidity
– In	combination	with	other	upper	ocean	measurements	

investigate	the	effect	of	air-sea	fluxes	in	particular	in	driving	
upper	ocean	salinity	budget



Research	questions

• What	is	the	relationship	between	the	surface	
forcings of	freshwater,	momentum,	and	heat	in	
setting	salinity	and	temperature	profiles,	and	is	
there	a	feedback	between	the	salinity	and	
temperature	stratification	and	air-sea	fluxes?

• What	effect	do	surface	fluxes	have	in	this	region	
on	evolution	of	ocean	surface	layer?

• How	do	smaller-scale	features	of	freshwater	
lenses	evolve,	and	how	is	this	evolution	
influenced	by	variations	in	surface	forcing?



Shallow	Glider	(Helo)
• 60-70m	dives
• 1668	profiles
• Within	4	km	of	WHOI	

mooring

Micro-T
shear

Micro-C

• Dissipation	measurements	
on	upwards	profiles	to	
near	surface

SPURS-1	Turbulence	measurements



Helo Data	Leg	1

Data	from	WHOI	buoy,	
courtesy	of	Tom	Farrar



Helo Data	Leg	1



Dissipation

Solar	radiation
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• Second moment turbulence closure model 
(Kantha and Clayson, 1994; 2004)
– Parameterization of increased TKE for:
• Wave breaking turbulence
• Langmuir circulation

–Change in background mixing consistent with 
strongly stable layer

• Also performed simulations with PWP 1-D 
model, with similar results
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Does a 1-D ocean model reproduce 
observed high dissipation?



1-D	Model	Simulations



Observed	and	modeled	dissipation

Observed

Modeled



Diurnal	cycle	of	dissipation
10	to	75	m,	Daily	wind	speeds	>	5	m	s-1

Moum et	al.	(1989)



Diurnal	cycle	of	dissipation
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10	to	75	m,	Daily	wind	speeds	>	5	m	s-1
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Diurnal	cycle	of	dissipation

SUNRISE SUNSET

2	to	75	m,	Daily	wind	speeds	<	5	m	s-1
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Diurnal	cycle	of	dissipation

SUNRISE SUNSET

SPURS	1

2	to	75	m,	Daily	wind	speeds	<	5	m	s-1

SUNRISE SUNSET

10	to	75	m,	Daily	wind	speeds	>	5	m	s-1
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Moum et	al.	(1989)



Density	Ratio

Wind	Speed

SST

27°

28°

29°

30°

Stratification



Density	Ratio
Stratification
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Density	Ratio
Stratification

Surface	salinity



Idealized	profile	of	the	upper	ocean	(D’Asaro,	1978)

Heaviside	function Dirac	delta	function

N2(z) = N2
0H(�z �H) +

g0H
✏
�(z +H)

• Solution	for	an	internal	wave	in	the	
mixed	layer	and	stratified	interior.	

• Use	surface	boundary	condition,	and	
matching	condition	at	seasonal	
thermocline.	

• Compare	average	energy	in	each	layer.	
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Addition	of	a	Diurnal	Warm	Layer

20
potential	density	(kg/m3)



No	density	jump	at	seasonal	thermocline
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The	density	jump	acts	as	a	linear	filter,	
attenuating	some	internal	waves	and	resonantly	

amplifying	others.

1	kg/m3 density	jump	at	seasonal	thermocline
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interfacial	wave	
dispersion	curve
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Internal	wave	tunneling

N > !
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Internal	wave	tunneling

Internal	waves	exponentially	decay	in	
regions	where	the	buoyancy	frequency
is	less	than	the	frequency	of	the	wave.	

N > !

N < !
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Internal	wave	tunneling

Internal	waves	exponentially	decay	in	
regions	where	the	buoyancy	frequency
is	less	than	the	frequency	of	the	wave.	

N > !

N > !

N < !
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Ratio	of	HKE	with	DWL
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Compare	the	energy	of	the	DWL	to	the	energy	of	the	stratified	interior.	
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Waves	propagating	from	the	deep	
ocean	tunnel	through	the	remnant	

mixed	layer	and	generate	strong	shear	
across	the	diurnal	warm	layer.
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As	does	the	probability	of	
IW	causing	Ri <	0.25

Ri =	0.25
Shear	increases	with	N
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NDWL increases,
Shear	increases,	

TKE	dissipation	increases
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SPURS-2	Buoy	Variability
• Real-time	data	available	from	WHOI	UOP	

web	site
• Hourly	bulk	parameters
• Used	COARE	3.5	to	calculate	turbulent	

fluxes
• SST,	SSS	(1	m)	also	available

Turbulent	Heat	Fluxes



SPURS-2	Buoy	Data

Rain	Rate

Net	Heat	Flux



Close-up	of	buoy	fluxes



Surface	temperature	and	salinity



Modeled	upper	ocean	variability



Ship	fluxes



Model	simulation



Mixing







August	30	– September	3



August	30	event



August	30	– September	3



August	30	– September	3



September	11	- 13



September	11	event	



September	11	- 13



September	11	- 13



Conclusions



Conclusions
• Internal	waves	from	deep	ocean	can	tunnel	through	the	

remnant	mixed	layer	and	cause	enhanced	shear	across	
DWL.	Observations	are	consistent	with	this	mechanism.

• Presumably	this	is	conceivable	for	a	freshwater-induced	
stably	stratified	surface	layer.

• Traditional	1-D	mixing	mechanisms	predict	cessation	of	
mixing	due	to	stabilizing	impact	from	warming	or	rainfall.

• Rainfall	may	also	create	mechanism	for	stabilizing	remnant	
mixed	layer	enhancing	IW	formation.

• Colder	rainfall	disrupts	diurnal	warming,	causing	increased	
turbulence

• As	with	diurnal	warming,	rainfall	effects	are	diminished	and	
delayed	with	depth



Questions


