NASA RESEARCH PRIORITIES

Earth System Variability & **Trends:** How are global precipitation, evaporation, and the cycling of water changing?

Earth System Responses & Feedback **Processes:** How can climate variations induce changes in the global ocean circulation?

Ocean Circulation

Surface Height

Barrier Layers

El Niño/La Niña

Thermohaline Flow

Aquarius Salinity Measurements Will Provide the Missing Parameter that Links Two Major Climate System Components:

Global Water Cycle Precipitation Evaporation Ice Freeze/Melt Land Runoff

86% of evaporation & 78% of precipitation occur over the ocean, dominating

the water cycle

[Impact] Change Seawater Water Flux Density

Aquarius Sea Surface Salinity (SSS)

Changes in global ocean circulation and heat transport have lasting climate impact

Measured in practical salinity units (PSU)

- Salinity responds to changes in the surface water fluxes and, in turn, alters the surface density field that drives ocean currents
- Observing ocean salinity is the only way to measure how water cycle changes effect the ocean & its circulation

Aquarius Science Goal – To understand the regional and global processes that couple changes in the water cycle and ocean circulation and influence present and future climate.

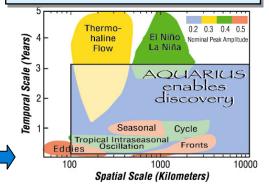
Science Objectives:

Seasonal cycle & year-to-year variability

Discovery & Exploration

Salinity mapping of unmeasured regions & features unknown to science

Water Cycle


Salinity response to surface water fluxes

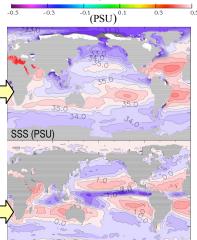
Ocean Circulation & Climate

- **Tropics** Climate feedback processes, El Niño. La Niña
- Mid-Latitudes Subduction and mode water formation
- **High-Latitudes** Deep water formation processes

Aquarius Measurement Objectives:

Resolve key ocean and climate phenomena at 100 km and larger spatial scales, monthly and longer time scales.

SCIENTIFIC RETURN


Aquarius will show details of global SSS variability, shown with this March-April-May map from an ocean model. Compare with lower map that shows all historical data for March-April-May.

Aquarius will aid understanding of:

- Seasonal cycle & mixing in climate models
- Salinity transport by currents
- •Ocean state & freshwater budget
- •SSS impact on tropical climate models & El Niño
- •SSS impact on ocean subsurface dynamics
- Ice-ocean interaction
- Processes that keep the Atlantic relatively salty

Surface salinity is linked to the water cycle: Mean SSS is highest where evaporation exceeds precipitation (E-P >0). and is lowest where there is excess precipitation, especially in the tropics

180 Longitude

It's the right time for Aquarius:

- •Global array of profiling floats will follow surface salinity and density response at depth
- Aquarius will complete a satellite-based climate observing system (i.e., rain, wind, sea level, sea surface temperature)

