

# Salinity variability associated with changes in the hydrological cycle variables

Olga Sato Paulo Polito olga.sato@usp.br

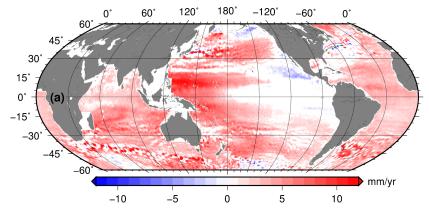
Oceanographic Institute of the University of SÃčo Paulo





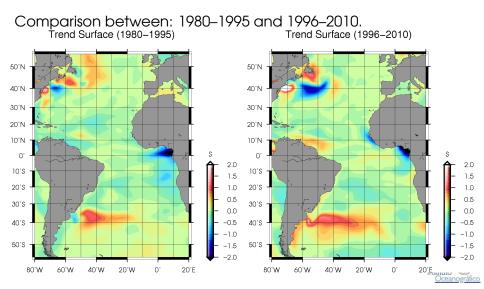
Olga Sato (IOUSP)

#### Outline



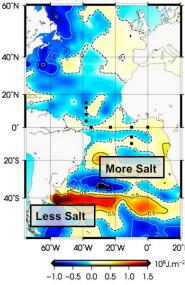



- 3 Links with Subtropical Mode Waters
- 4 Changes in the Hydrological Cycle
- 5 Concluding Remarks




## Sea surface height trend from satellites (1993–2010) (AVISO)




- $\bullet$  Global increasing trend of (3.6  $\pm$  2.4) mm/year;
- SW Pac. (4.2  $\pm$  2.1) mm/year;
- SW Atl. (3.3  $\pm$  2.2) mm/year.

#### Salinity trends at surface: GODAS

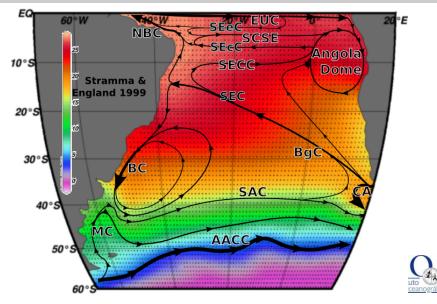


#### Implications for the Circulation

Sato and Polito (2008)



Haline contraction effect:


- Decrease in height  $\rightarrow$  salinity increase
- Increase in height  $\rightarrow$  salinity decrease
- Show opposite trends in the height in the SW South Atlantic.

- Weakening of the geostrophic currents in the subtropical gyre.
- Southward migration of the gyre.

Instituto Oceanográfico

Olga Sato (IOUSP)

#### South Atlantic circulation



#### Some questions

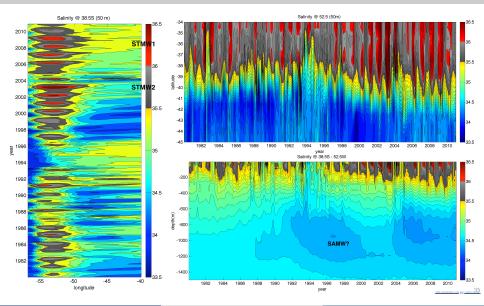
About the changes in the SW corner of the South Atlantic:

- Are the salinity trends due to air-sea interaction processes at the surface (E-P) or by changes in the water column (mode water formation, ventilation)?
- A local or remote process?
- Are the low frequency fluctuations associated with signals advected by currents, for instance, Agulhas leakage?
- Why is the signal so intense at the South Atlantic?



#### Using global ocean models

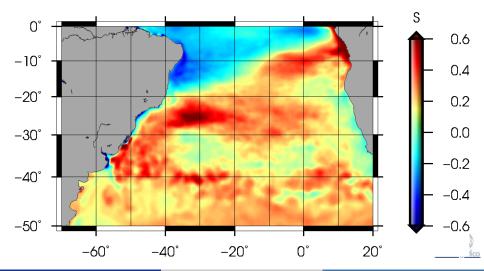
NCEP Global Ocean Data Assimilation System (GODAS)


- Based on the GFDL MOM. v3 and forced by variables from NCEP Reanalysis 2.
- Assimilation of TS in situ data with synthetic salinity profiles computed from climatological data when needed. Behringer and Xue (2004).

#### OCEAN GENERAL CIRCULATION MODEL (ECCO)

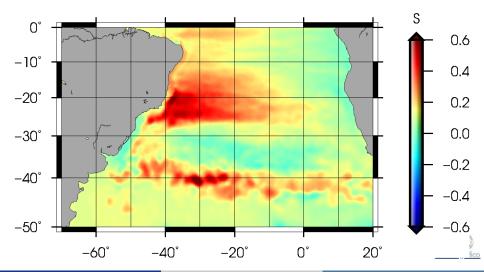
- Based on the MIT general circulation model (MITgcm).
- Combination the general circulation model with diverse observations to depict the time-evolving global ocean state. (ECCO Consortium)



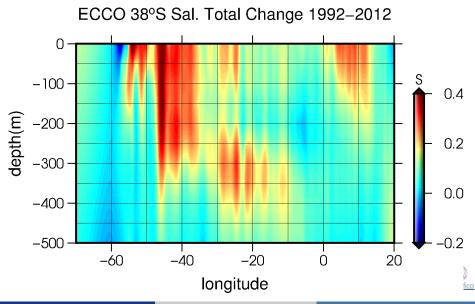

#### Temporal evolution @ 52°W - 38°S - 50 m (GODAS)



Olga Sato (IOUSP)


### Salinity total change at surface from ECCO

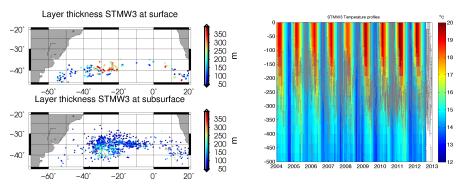
#### ECCO Sal. Total Change 1992–2012




### Salinity total change at 200m from ECCO

ECCO 200m Sal. Total Change 1992–2012

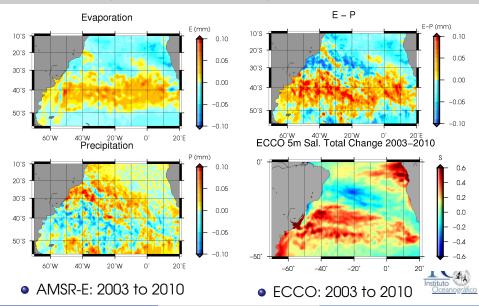



#### Salinity total change at 38°S from ECCO



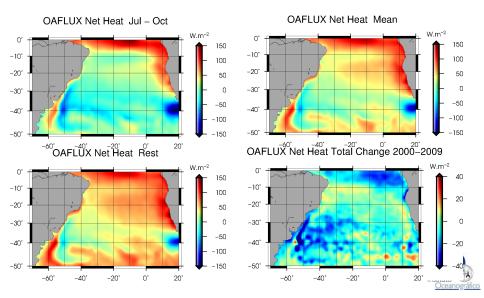
#### Mode Waters of the SW South Atlantic

- Three types of Subtropical Mode Waters (STMWs) (Provost et al., 1999).
- Specific (T, S,  $\sigma_{\theta}$ ) values and potential vorticity minimum.
- Brazil-Malvinas Confluence region:
  - Brazil Current (BC): southward, carries warm and salty South Atlantic Central Water (SACW)
  - Malvinas Current (MC): northward, transports cool and fresh Subantarctic Surface Water (SASW)
- Southward extension of warm BC encounters cold weather
  STMW formation by convection;
- Northward flow of MC carries Subantarctic Mode Water (SAMW) toward the confluence.


#### Subtropical Mode Water 3



- The ventilation process occurs between July and October when the new STMWs are formed.
- STMWs are also identified at subsurface layers year round usually displaced from its formation region.




#### Total change in the hydrological cycle



Olga Sato (IOUSP)

#### Total change in Surface Heat Fluxes from OAFLUX



Olga Sato (IOUSP)

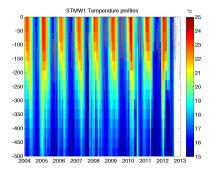
#### Concluding remarks

- Increasing trends for the second 15-year period, 1996-2010, correspond to more frequent and intense southward excursions of the BC (SACW);
- The surface heat budget presents spatial patterns that are consistent with the idea that heat losses trigger the subduction of BC waters.
- We found interannual trends in the surface heat budget at the western South Atlantic region where STMWs are observed.
- Evidences indicate that the inter–annual signal comes from air–sea interaction process rather than advection by the Agulhas Current.



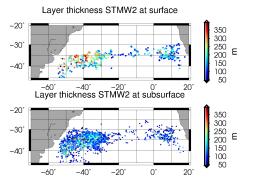
## Thank you!

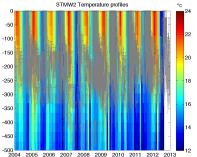



Olga Sato (IOUSP)

Salinity and Mode Waters

18 / 20


#### Subtropical Mode Water 1








#### Subtropical Mode Water 2





