

Aquarius Instrument-Only Calibration: Correcting Drift, "Wiggles" and Pseudo-random biases

Sidharth Misra and Shannon Brown Jet Propulsion Laboratory, California Institute of Technology

11/18/2015

Aquarius calibration issues

• Drift:

- All six channels of the Aquarius radiometer have indicated a drift with respect to ocean model
- Exponential correction applied to noise-diode temperature to correct drift

"Wiggles"

- Pseudo-periodic oscillation in the data that are different for all six channels
- Root cause backend Voltage to Frequency
 Converter (VFC) locking issue impacts reference load counts

Systematic pseudo-random bias

 There is a potential that the same phenomenon that causes wiggles also causes bias in the measured antenna temperature that would appear pseudo-random in nature – but is in fact systematic

(1) Drift correction

$$TA = \left(\frac{C_A - C_R}{C_{RND} - C_R}\right) T_{ND} + T_R$$

- Drift potentially caused by out-gassing during the first couple of months
- Directly impacts noise-diode of all channels

$$C_{A} = G(T_{A} + T_{RX}) + C_{off}$$

$$C_{R} = G(T_{R} + T_{RX}) + C_{off}$$

$$C_{RND} = G(T_{R} + T_{ND} + T_{RX}) + C_{off}$$

$$C_{AND} = G(T_{A} + T_{ND} + T_{RX}) + C_{off}$$

$$C_{AND} = G(T_{A} + T_{ND} + T_{RX}) + C_{off}$$

$$C_{ACND} = G(T_{A} + T_{CND} + T_{RX}) + C_{off}$$

6 unknowns

5 equations

- Impossible to calibrate the calibrator using instrument only parameters
- Need an external constraining source
- Prefer NOT use Ta ocean model
- Antarctic model used for relative calibration

(1) Drift correction lce model

Coupled thermodynamic/radiative transfer model

- MEMLS model (Wiesmann and Matzler, 1999) used to compute upwelling TB
- Heat transport equation solved for ice T(z,t) profile
- Surface temperature values obtained from near by AWS station (JASE) used as top boundary condition
- Thermal diffusivity increases as a function of density (Paterson, 2000)

Tuned using multi-frequency AMSR-E TBs and in situ surface temperature data

- Generated random snow layer structures to find a realization that gave best fit 6-37 GHz V&H-pol TBs
- lce dielectric model from Tiuri et al.,
 (1984) gave best fit AMSR-E data

(1) Drift correction Vicarious Drift Correction + Double Difference

(1) Drift correction Vicarious Drift Correction + Double Difference

Plots above give an example of drift correction derived off the ice – vicariously fit to the other channels and compared to the ocean model

(2) Wiggle Correction & (3) Pseudo-random bias **VFC locking and Aquarius**

Histogram of counts

(4) Resulting in noisy reference counts to be biased towards a locked count when averaged

(2) Wiggle Correction Antenna Counts Histogram

$$TA = \left(\frac{C_A - C_R}{G}\right) + T_R$$

(2) Wiggle Correction **Correction Derivation**

Reference load diff – V3

(2) Wiggle Correction TA correction

(3) Pseudo-random ocean bias correction Antenna Counts Histogram

(3) Pseudo-random ocean bias correction Impact on Antenna Counts

- Antenna counts have a much larger dynamic range (from land to ocean) than the reference load counts.
- The offset error introduced due VFC locking on the Antenna counts varies as a function of,
 - Brightness temperature scene changes
 - Seasonal temperature changes
 - Salinity changes
 - Counts drift
- Due to multiple factors involved, the offset error would look random in nature
- Even though the noise looks random, it introduces systematic errors in the antenna temperature measurements
 - locally the antenna counts exhibit a similar stability as the reference load counts with additional varying factors
 - This locally introduces a non-random systematic bias to the science measurements that is also temporal in nature.

(3) Pseudo-random ocean bias correction Identifying Lock Points

Black and White – For Easier Visualization Counts vs. Days – Lock points – Aquarius 6 receivers

Counts Counts

Counts

13

(3) Pseudo-random ocean bias correction TA impact

- Above figures show a simulated example of bias introduced to mean ocean TAs due to backend VFC locking
- Errors in general less than 0.05K (higher for H-pol)
- Local bias larger during first couple of months of drift

(3) Pseudo-random ocean bias correction Correction techniques

The impact on TA can be corrected in the following ways

1.Introduce random-noise to antenna counts to wash out impact of locking points on the antenna counts

- Pros: Applied to all antenna counts
- Pros: Does not introduce its own systematic bias
- Cons: Increases the noise in the derived salinity data (have margin)

2.Apply correction based off similar shapes derived from "wiggle" correction by applying constrained probability theory (backup)

- Pros: Does not increase white noise of the system
- Cons: Correction might introduce its own systematic bias due to improper assumption
- Cons: Very hard to verify

3. Alternate recommendation: Ignore systematic bias

 Current simulated bias is 0.05K to 0.08K for both channels which is below Aquarius requirements

Summary

1. "Wiggle" Correction

- Correction currently being implemented at GSFC
- Will be evaluated over next couple of weeks
- Secondary calibration issues previously hidden might come through

2. Drift Correction

- Current initial drift correction based off HYCOM exponential fit
- We've demonstrated that an exponential fit using Antarctic Ice model scales with respect to ocean drift for V-pol beam 3
- This correction can be vicariously applied to other channels and polarizations

3. Pseudo-random ocean bias

- There does exist a systematic offset bias that is dependent on salinity, surface temperature, instrument count drift – and varies over time
- Correction of such bias is possible but not trivial
- Initial simulations of bias generally <0.08K and this TA impact can potentially be ignored

Backup

Identifying Lock Points

Deriving a distribution based correction

 Aquarius antenna counts ultimately require the lock-point spikes in the distribution to reduce and it's neighbors to increase

 A temporal behavior can not be directly derived from a distribution correction

$$x_{new}\left(t_{lock}\right) = \begin{cases} x_{old}\left(t_{lock}\right) - 1, & if \ slp(t_{lock}) > p \\ x_{old}\left(t_{lock}\right) + 1, & if \ slp(t_{lock}) < -p \end{cases}$$

- We calculate the slope of the time domain signal at every locking point
- If the signal is rising, chances are the signal is locked higher (left figure) and vice-versa (right figure)
- We optimize for the slope value p to redistribute the histogram

Histogram Lock Points Detected

Pre-correction

Post-correction

Resulting systematic biases Initial Analysis

<0.1K peak to peak bias depending on channel being observed

Challenges Ahead

- Still ways to go before this correction can be implemented in Aquarius v5.0
- Verification is a big challenge
 - We do not want to add systematic bias of our own
 - We can not compare with the HYCOM model since we are correcting localized variations
 - Needs to be compared with localized ARGO regions
 - Is this even a problem?
- Lock point identification not complete
 - Channel 1 Beam 2 has the lowest ocean counts, making it very difficult to retrieve the locking points using above method
 - At certain locations due to high density of locking points, some lock points get missed
 - Locking spikes magnitude not completely equal

Backup

What is locking? (or "flat-spot")

$TB \rightarrow (antenna) \rightarrow TA \rightarrow (radiometer front end+detector) \rightarrow V \rightarrow (VFC) \rightarrow F \rightarrow (counter) \rightarrow C$

- VFCs are responsible for converting voltage proportional to the Tb measurement to counts
- VFC (Voltage to Frequency Converter) can lock on certain frequencies due to the presence of an interfering clock signal
 - Spike translates to a "flat-spot" in VFC response. The signal gets locked on to a particular count value (voltage)
- After launch, odd feature in histogram of Jason-2 AMR 34 GHz TB observed
- Traced to VFC flat spot issue proven by lab test with AMR spare hardware
 - VFC "locked" onto 9001 counts due to interference with another clock in the system
 - Biased noise diode measurements over ocean

Simulated Locking Error on Antenna Temperature

- As an example, we derived simulated antenna counts from the model antenna temperature and measured gain and offset of the radiometers
- We added an offset error to the simulated counts similar to the wiggle errors observed on the reference counts
- We re-derived the antenna temperature values and subtracted the original antenna temperature samples

Summary

- Aquarius' Voltage to Frequency Converters (VFC) get "locked" at certain frequency locations and this impact is clearly observed in the histogram of the uncalibrated counts
- We have already applied a correction to the reference load counts causing TA "wiggles"
- Locking counts at the antenna scene counts causes non-random systematic temporal biases in the ocean salinity retrieval that is hard to detect
- We have developed a preliminary method to identify these counts and apply a correction from the counts distribution to temporal samples
- Method needs to be verified and tweaked further