

Aquarius Sea Surface Salinity Retrievals using a Roughness Correction from the CONAE MicroWave Radiometer (MWR)

W. Linwood Jones¹, Yazan Hejazin¹, Maria Jacob² and Monica Rabolli²

 1 - Central FL Remote Sensing Lab Univ. Central Florida Orlando, FL
2- CONAE Buenos Aires, AR

Aquarius Science Team Meeting Nov. 17th, 2015

MWR Ocean Roughness Correction

- Pre-launch, ocean roughness correction was considered the dominant error for AQ SSS retrieval
- Baseline SSS retrieval algorithm uses the AQ Scat to provide the roughness correction (Δ Tb)
 - Δ Tb is correlated with measured radar backscatter
- MWR provides an alternative approach for obtaining an AQ roughness correction
 - MWR measured (top-of- atmos) Tb at Ka-band is used to calculate excess ocean emissivity due to wind speed (and wind direction)
 - Using ocean Radiative Transfer Model, measured Ka-band excess emissivity is translated to L-band ΔTb

MWR Roughness Correction Status

- At the end of 2014, the MWR roughness correction algorithm reached maturity
- Enabling factors:
 - Completion of MWR counts-to-Tb algorithm
 - Release of MWR L1B V7.0 beta Tb product Nov. 2014
 - Release of AQ L-2 V3.0

V6.0 23H DD biases (MWR-WS) July 2012 – Nov 2013

V6.0 23H DD biases (MWR-WS) July 2012 – Nov 2013

V7.0 DD Normalized to WindSat

MWR Roughness Correction Algorithm

Theoretical Ocean Emissivity RTM L-band Tuning

Tuning L-band RTM for Wind Speed

Theoretical Ocean Emissivity RTM Ka-band Tuning

Tuning Ka-band RTM for Isotropic Wind Speed

Tuning Ka-band RTM for Relative Wind Direction

Empirical Roughness Correction Relationship (for Isotropic Winds)

Wind Direction ΔTb_{WD} Adjustment

- Wind direction effects are removed using NCEP wind directions and corresponding AQ/MWR antenna "azimuth look" geometries
 - Wind direction effects removal are complicated because all IFOV's (L-band & Ka-band) have different relative wind directions χ

 $\chi = (\text{IFOV azimuth}) - (\text{wind flow direction})$

Relative Wind Directions are Different for each IFOV

Roughness Correction for Both Methods AQ Scat - blue & MWR - red

Differences Between Both Roughness Corrections

MWR Roughness Derived SSS: (AQ SSS)_{MWR}

- The MWR derived L-band roughness correction is applied to the L-2 ocean surface Tb
- Resulting Smooth Surface Tb is used to retrieve AQ SSS
 - Same ADPS SSS retrieval algorithm used as for L-2

$\Delta SSS = AQSSS - HYCOM$ Double Difference = $(\Delta SSS)_{Scat} - (\Delta SSS)_{MWR}$

ΔSSS for Different Roughness Corrections: Scat, MWR & Avg, for AQ Beam-3, May 2013

ΔSSS for 3 Rough Corrections over WS AQ Beam-3 May 2013

Mean value (psu)				
Beam 3 (m/s)	0 –5	5 - 10	10-15	15 - 20
AQ	0.05	0.02	0.15	0.17
MWR	0.11	0.04	-0.05	-0.25
Avg	0.07	0.02	0.03	-0.05
Standard deviation value (psu)				
Beam 3 (m/s)	0 –5	5 - 10	10-15	15 - 20
AQ	0.43	0.44	0.40	0.42
MWR	0.57	0.53	0.56	0.62
Avg	0.46	0.45	0.41	0.39

Summary

- A legacy data set of 30 months of MWR data exist for roughness correction for all AQ Beams
 - Release of MWR roughness correction algorithm in Summer 2015
- Validation of (AQ SSS)_{MWR} was performed using HYCOM for Jan, April & July 2013
 - Also inter-comparison with (AQ SSS)_{Scat}
 - Result show that MWR roughness correction is very similar to AQ Scat roughness
 - Further improvements may be possible using weighted averages of MWR & Scat roughness

Future Work

- Development of combined Scat & MWR roughness correction and associated AQ L-2 SSS
- Investigation of the differences between Scat & MWR roughness corrections

-Especially for high WS

• Evaluation of roughness correction during salinity stratification