

Aquarius Scatterometer Calibration

Fore, A., Neumann, G., Freedman, A., Chaubell, M., Tang, W., Hayashi, A., and Yueh, S.

Jet Propulsion Laboratory, California Institute of Technology © 2015 California Institute of Technology, Government Sponsorship acknowledged

Aquarius Instrument Calibration

- Aquarius includes a loop back calibration feature
 - Tracks transmit power and receiver gain product.
 - Any variations within the loop back pathway are automatically corrected in σ_0 computation.
- Some key portions of hardware lie outside of loopback pathway
 - These are controlled thermally to ~ 0.5 deg C temperature variations.
 - Or designed to be insensitive to changing temperature.

Ratio of Loop-back Power to CND Gain

Delta Sigma0 VV [dB]

Amazon γ₀

$$\gamma_0 = \frac{\sigma_0}{\cos(\theta_{inc})}$$

- PALSAR found γ₀ values in the Amazon stable across 20-45 degrees in incidence angle*
 - Wet-dry seasonal difference of ~ 0.27 dB**
 - Wet season is approx. Nov-April.
- Best estimates are:
 - HH ~ -6.28 dB (std 0.18)
 - HV ~ -11.15 dB (std 0.21)
 - Not clear which season this is from!

**M. Shimada. Long-term stability of I-band normalized radar cross section of amazon rainforest using the jers-1 sar. Canadian Journal of Remote Sensing, 31(1): 132–137, 2005.

RAP correction is range antenna pattern correction

Regions used in γ_0 Analysis Include data in blue polygon and not in black polygon

Amazon Gamma 0 HH [dB]

Bias compared to PALSAR PALSAR values: HH: -6.28 dB; HV: -11.15 dB

Asc / Dec	Beam 1	Beam 2	Beam 3
All HH	0.03	0.03	0.07
Ascending HH	0.06	0.01	0.01
Descending HH	-0.01	0.04	0.15
All VV	-0.02	0.04	0.07
Ascending VV	0.00	0.02	0.05
Descending VV	-0.05	0.07	0.08
All HV	0.07	0.17	0.10
Ascending HV	0.09	0.17	0.10
Descending HV	0.05	0.19	0.16

No significant ascending / descending difference

Ocean Comparison Aquarius HH / PALSAR HH

Plot of PALSAR HH GMF (black square) and our Aquarius HH GMF (red o).

-Compute wind speed PDF weighted mean ratio of Aquarius GMF divided by PALSAR GMF.

Beam	1	2	3
Mean Ratio [dB]	0.55	0.01	-0.71

SCAT Speed compared to SSMI/S

CAP Speed compared to SSMI/S

Triple-Collocation Results

The scatterometer-only wind speed product has performance within 0.2 m/s RMS of RapidSCAT

	Bias	Slope	RMS Error
SSMI	0	1	0.6670
RapidScat	0.4440	0.9525	0.7333
SCAT 4.0	-0.1193	1.0184	0.9531

	Bias	Slope	RMS Error
SSMI	0	1	0.6715
RapidScat	0.4395	0.9532	0.7295
CAP 4.0	-0.3214	1.0752	0.8953

Triple-Collocation Results (CAP)

The vector triple-collocation results suggest that the CAP wind direction is not as good as that from RapidScat.

U Component	Bias	Slope	RMS Error
ECMWF	0	1	0.8107
RapidScat	-0.0997	0.9912	1.1487
CAP 4.0	-0.0273	1.0309	1.3924

V Component	Bias	Slope	RMS Error
ECMWF	0	1	0.8187
RapidScat	0.0427	1.0265	1.4584
CAP 4.0	-0.0305	1.0383	1.5944

Wind Speed Bias/STD as compared to SSMI/S

Summary

- Aquarius is a stable source of calibrated L-band backscatter over the mission.
 - Stability:
 - Instrument only predicts worst-case of 0.1 dB
 - Measured model shows order 0.1 dB drift corrected for in V4.0 data
- Aquarius is calibrated to be consistent with PALSAR
 - Amazon:
 - We find no significant ascending descending difference.
 - Seasonal variation of 0.5 dB over Amazon.
 - Ocean:
 - Comparison of Aquarius and PALSAR model functions shows they are calibrated to the 1 dB level.
 - Various factors can explain the residual differences (ancillary wind speed used, ...etc.).
 - Aquarius has been used as reference for SMAP radar calibration.
- Aquarius provides a wind speed product with accuracy approaching that from previous Ku and C-band scatterometers.

Backups

Histogram of CAP vs SSMI/S Speed

PALSAR Found $\gamma_0^{HH} = -6.28 \text{ dB}$ and $\gamma_0^{HV} = -11.15 \text{ dB}$ Histograms of Aquarius γ_0 For the Three Beams

