Columnar Water Vapor Estimation Over Land Using Radiometer Data From SAC-D/Aquarius

Dr. Ing. Javier Epeloa

La Plata, Buenos Aires

17/11/2015

Index

Index

Members of the TRIACLE group

2 Estimation of CWV over land using the MWR instrument

- Algorithm
- Results

Index

Estimation of CWV over land using the MWR instrument Conclusions and Future Works Members of the TRIACLE group

Index

Index

Members of the TRIACLE group

2 Estimation of CWV over land using the MWR instrument

- Algorithm
- Results

Index

Estimation of CWV over land using the MWR instrument Conclusions and Future Works

TRIACLE

Members of the TRIACLE group

- Dr. Amalia Meza, Dr. Laura Fernadez, Dr. María Paula Natali.
- Dr. Javier Epeloa, Dr. Luciano Mendoza, Dr. Juan Moirano.
- Lic. Clara Bianchi, Geof. Juan Manuel Aragón.
- All members at Faculty of Astronomy and Geophysical Sciencies of La Plata (FCAG-UNLP).

Algorithm Results

Main Objetives

• Estimation of columnar water vapor (CWV) over land using the MWR data.

Main Objetives

• Estimation of columnar water vapor (CWV) over land using the MWR data.

Algorithm

Results

• Selection of the algorithm.

Main Objetives

 Estimation of columnar water vapor (CWV) over land using the MWR data.

Algorithm

Results

- Selection of the algorithm.
- Climate division of the land surface to perform the algorithm.

Algorithm Results

Köppen - Geiger climate classification

Data Selection

Algorithm Results

GPS stations

Algorithm

Results

Algorithm Results

Radiosonde Stations

• The regional division is based on the vegetation.

- The regional division is based on the vegetation.
- The regional division permit to obtain coefficients of the algorithm by zones.

- The regional division is based on the vegetation.
- The regional division permit to obtain coefficients of the algorithm by zones.
- The region of our analisis is at south-east of USA, where the climate type is Cfa (Köppen Geiger classification).

Algorithm Results

Indice de la Presentación

Index

Members of the TRIACLE group

2 Estimation of CWV over land using the MWR instrument Algorithm

Results

Algorithm Results

Retrieval algorithm

$$CWV = A_0 + A_1 Ln(\frac{T_s - T_{b_{23.8}}}{T_s}) + A_2 Ln(\frac{T_s - T_{b_{36.5}}}{T_s})$$

Algorithm Results

Retrieval algorithm

$$CWV = A_0 + A_1 Ln(\frac{T_s - T_{b_{23.8}}}{T_s}) + A_2 Ln(\frac{T_s - T_{b_{36.5}}}{T_s})$$

• Two frecuencies at: 23.8 Ghz y 36.5 Ghz (only vertical polarization).

Algorithm Results

Retrieval algorithm

$$CWV = A_0 + A_1 Ln(\frac{T_s - T_{b_{23.8}}}{T_s}) + A_2 Ln(\frac{T_s - T_{b_{36.5}}}{T_s})$$

- Two frecuencies at: 23.8 Ghz y 36.5 Ghz (only vertical polarization).
- Latitudes between: 30° N to 40° N, and Longitudes between: 100° E to 85° E from North America.

Algorithm Results

Retrieval algorithm

$$CWV = A_0 + A_1 Ln(\frac{T_s - T_{b_{23.8}}}{T_s}) + A_2 Ln(\frac{T_s - T_{b_{36.5}}}{T_s})$$

- Two frecuencies at: 23.8 Ghz y 36.5 Ghz (only vertical polarization).
- Latitudes between: 30° N to 40° N, and Longitudes between: 100° E to 85° E from North America.
- Clear Sky conditions.

Algorithm Results

Retrieval algorithm

$$CWV = A_0 + A_1 Ln(\frac{T_s - T_{b_{23.8}}}{T_s}) + A_2 Ln(\frac{T_s - T_{b_{36.5}}}{T_s})$$

- Two frecuencies at: 23.8 Ghz y 36.5 Ghz (only vertical polarization).
- Latitudes between: 30° N to 40° N, and Longitudes between: 100° E to 85° E from North America.
- Clear Sky conditions.
- Brigthness temperature less than 300°K.

Algorithm Results

Index

Index

Members of the TRIACLE group

2 Estimation of CWV over land using the MWR instrument

- Algorithm
- Results

Algorithm Results

Results (GPS estimation)

Algorithm Results

Results (Comparison with RAOB observation)

Algorithm Results

Results (CWV map)

Index

Index

Members of the TRIACLE group

Estimation of CWV over land using the MWR instrument

- Algorithm
- Results

Conclusions

Conclusions

• We propose a log-linear algorithm in function of brightness temperatures at 23.8 GHz and at 36.5 GHz to obtain CWV in this region.

Conclusions

- We propose a log-linear algorithm in function of brightness temperatures at 23.8 GHz and at 36.5 GHz to obtain CWV in this region.
- The standard deviation (STD) between CWV_{GPS} and CWV_{Cal} is 6.47 mm and the correlation is 0.88.

Conclusions

- We propose a log-linear algorithm in function of brightness temperatures at 23.8 GHz and at 36.5 GHz to obtain CWV in this region.
- The standard deviation (STD) between CWV_{GPS} and CWV_{Cal} is 6.47 mm and the correlation is 0.88.
- The CWV_{Cal} is compare with CWV_{RAOB} , the mean difference between both CWV values is -0.59.mm and its STD is 5.96mm

Future works

Future works

• The algorithm will be applied to larger regions.

Future works

- The algorithm will be applied to larger regions.
- Perform the algorithm with other instruments like the AMSR2 from NASA

Future works

- The algorithm will be applied to larger regions.
- Perform the algorithm with other instruments like the AMSR2 from NASA
- Inter-comparison with another instruments and techniques

Thanks for your attention.

