LINKING INFORMATION FROM SSS TO OCEANIC FRESHWATER FLUXES USING NEAR-SURFACE SALINITY BUDGETS

NADYA T. VINOGRADOVA¹ RUI M. PONTE¹ MARTHA W. BUCKLEY²

¹ Atmospheric and Environmental Research (AER), USA

² George Mason University (GMU), USA

CHANGES IN SSS AS INDICATOR OF E-P?

Linking surface salinity to freshwater flux is an important subject (e.g., Durack et al. 2012; Pierce et al., 2012; Terray et al., 2011; Bingham et al., 2011; Yu 2011), but is difficult in practice (Vinogradova and Ponte 2013)

EXAMPLE

- Can net freshwater flux be inferred from globallyaveraged SSS from an ocean estimate?
- \square Salinity-derived freshwater flux = $\alpha \cdot \bar{S}$
- Non-linear relationship confirms the importance of ocean fluxes in regulating global-mean changes in SSS.

SALINITY BUDGET FRAMEWORK

- \square Salinity budget : $S' = \mathcal{F} + O$
- □ Differences between S' and T related to O affect regression (Vinogradova and Ponte 2013).
- \square Inclusion of information about O from data can improve estimates of \mathcal{F} .
- □ Objectives:
 - $lue{lue}$ Where, when can $\mathcal F$ be inferred from partial knowledge of the budget terms?
 - lacktriangle Develop practical methodologies on how to use Aquarius measurements to infer meaningful values of $\mathcal F$

BASIC APPROACH

- Explore salinity budgets within the constrained estimation of the oceanic state:
 - Guaranteed budget closure
 - Solutions are close to observations (including salinity)
 - Dynamical consistency with all the forcing fields

ECCO SOLUTION

- Ocean state estimate is obtained from model/data synthesis produced by the ECCO consortium [1], [2]
- ECCO solution is close to observations within prescribed data errors
- □ Future ECCO solutions will include Aquarius/SMOS SSS constraints (Vinogradova et al., 2014)

Estimating the Circulation and Climate of the Ocean (ECCO) [1] Wunsch et al., 2009; [2] Speer and Forget 2013

ECCO SOLUTION

- It is important to accurately represent the effects of freshwater fluxes
 - "Virtual" salt flux (previous versions)
 - Real freshwater flux (current analysis)
- Freshwater flux modifies tracer concentration and ocean volume:

$$\frac{\partial(hS)}{\partial t} = -\nabla \cdot (hS\boldsymbol{u}) + \nabla \cdot (\boldsymbol{K}\nabla S)$$

$$\frac{\partial h}{\partial t} = -(E - P - R) - \nabla \cdot (h\boldsymbol{u})$$

$$\boldsymbol{\downarrow}$$

$$h = H + \eta$$

$$h\frac{\partial S}{\partial t} = S(E - P - R) - \nabla \cdot (\boldsymbol{u}S) + \nabla \cdot (\boldsymbol{K}\nabla S)$$

ECCO SALINITY BUDGET: STD

ECCO SALINITY BUDGET: TIME MEAN

FUTURE PLANS

- Preliminary results show that ocean contribution to salinity variations is particular important in the tropics and many coastal regions, which may complicate the use of salinity observations as a direct proxy of freshwater flux, at least on timescales from months to years
- Future analysis of the mixed-layer salinity budget and decomposition of oceanic fluxes will be used to explore how freshwater fluxes can be expressed as a combination of ocean variables, including SSS:
 - E.g., do Ekman advection and surface fluxes dominate in any region or time scale?
 - What is the impact of Aquarius data constraints on the upper ocean salinity and surface freshwater fluxes?