# Mitigation of Large Scale Biases in the Aquarius Salinity Retrievals

T. Meissner and F. Wentz Remote Sensing Systems meissner@remss.com



**2014 Aquarius / SAC-D Science Team Meeting** 

November 11- 14, 2014 Seattle. Washington, USA

Remote Sensing Systems www.remss.com





### Outline

- 1. Current Status:
  - Observed Biases
  - Post-hoc SST correction
- 2. 2-Dimensional Analysis: SST and Wind Speed
- 3. Low Wind Speed Limit
  - Dielectric Model
  - O<sub>2</sub> Absorption Model
  - SST Auxiliary Field
- 4. Moderate –High Wind Speeds
  - Wind Emissivity Model
- 5. Summary
- 6. Going Forward

## SST Dependent Biases Post-hoc Correction (2)

- The ADPS V3.0 standard SSS shows fresh biases in low latitudes and salty biases in high latitude compared to ARGO and HYCOM.
- These biases are a large part of the observed error
  - Global RMS of monthly 1 deg averages
  - Goal: 0.2 psu
- These biases are not caused by stratification/rain (see afternoon talk).
- These biases are caused by the geophysical model function and need to be removed.
- ADPS V3.0 contains a bias adjusted SSS product, which should be used for scientific studies.

### Impact on Performance

Remote Sensing Systems www.remss.com



V3.0 no adjustment

V3.0 bias adjusted

180

270

360







### Std. Dev. of Monthly Averages vs. ARTICOSS.com Error dominated by local SST-dependent biases



CAP V3.0 has implemented an SST bias adjustment. So does SMOS. Need to compare ADPS SST-bias adjusted SSS with CAP V3.0.

### Task and Challenge for L2 Algorithm

- The Aquarius salinity retrieval is a physical algorithm, which relates the measured TB to the emission of electromagnetic radiation from the ocean surface and its propagation through the atmosphere and ionosphere.
  - Geophysical Model (GM) based on Radiative Transfer Model (RTM)
- The goal is to try to identify the physical reason = component of the GM that cause the observed biases and correct for it.
- Should be done at the TB level and horn specific.
  - Integrated into calibration loop.

NASA

## Key: 2-Dimensional Stratification www.remss.com

TB measured – RTM as function of SST and wind speed Rain filtered



## Low Wind Speed Limit Flat Surface

#### V3.0 post-hoc bias adjustment



low wind speed limit of [TS, W] diagram

#### Possible Causes:

- Model for sea water permittivity (Meissner Wentz 2012)
- Model for O<sub>2</sub> absorption in the atmosphere
- Error in auxiliary SST input
- NOT: Rain/Stratification
- Small: 0.1 K level
- Current post-hoc bias adjustment overcorrects in warm water and undercorrects in cold water (0.2 psu).



# Low Wind Speed Limit Channel Signature



1 K TB error 2 psu SSS error Very Small Inter-channel Differences

#### VASA

### Small Error in Sea Water Permittivity Model Im (ε) changed by 0.3%



1 K TB error 2 psu SSS error

-0.5

SST [°C]

# Small Error in Auxiliary SST Input (Poynolds OLSST without NAVA Data)





Similar signature as error in dielectric model

### Oxygen Absorption



- O<sub>2</sub> absorption signal amounts to 3 5 K of TOA TB.
   It depends on atmospheric temperature, which correlates with SST.
- At L-band  $O_2$  absorption is not caused by the 60 GHz  $O_2$  band but due to non-resonant continuum, which is caused by transitions between degenerate (same energy) levels of the  $O_2$  molecule. This is very difficult to measure in laboratory experiments.
- The O<sub>2</sub> absorption model used in V3.0 salinity retrievals is based on H. Liebe [1985], which itself quotes a paper by Mingelgrin [1974].
- We have made changes in the temperature dependence to match satellite TB with RTM TB in dry air at C-band and X-band.

# Small Error in O2 Absorption 2% Change of $A_0$ ( $T_s$ )



# Low Wind Speed Limit Channel Signature



Very Small Inter-channel Differences



# Combined Error Dielectric Model + O<sub>2</sub> Absorption



1 K TB error 2 psu SSS error



### 2-Dimensional Stratification www.remss.com

### Fresh Biases in Tropics: Increase with Wind Speed



Fresh biases in tropics are neither caused by dielectric model nor O<sub>2</sub> absorption, but by the modeled SST dependence in wind induced emissivity model.

## SST Dependence of Wind Induced Emissivity

Meissner, Wentz + Ricciardulli, JGR Special Issue

$$\Delta E_{W}(W, T_{S}) = \delta(T_{S}) \cdot \alpha(W) \qquad \delta(T_{S}) = \frac{E_{0}(T_{S})}{E_{0}(T_{ref})} \quad T_{ref} = 20^{\circ} C$$

In V2.0 the wind induced emissivity  $\Delta E_{W}$  had no SST dependence.

In V3.0 we have assumed that  $\Delta E_W$  has the same SST dependence as the specular emissivity  $E_0$ .

This is based on assuming geometric optics (tilted facets) and has been used in our RTM at higher frequencies.

It obviously breaks down at L-band in warm water. At L-band surface emission and scattering are different than at higher frequencies, as other physical mechanisms dominate.

### SST Dependence of Wind Induced Emissivity

$$\Delta E_{W}(W, T_{S}) = \delta(T_{S}) \cdot \alpha(W) \qquad \delta(T_{S}) = \frac{E_{0}(T_{S})}{E_{0}(T_{ref})} \quad T_{ref} = 20^{\circ} C$$



full:  $\Delta E(T_s)$  for average wind speed. dashed: divide by  $\delta$ . ideally should be flat.

The assumed SST dependence improves the model up to 20°C but makes it worse in very warm water.

### Summary

- SST dependent biases need to be stratified in 2 dimensions as function of SST and wind speed.
- Low wind speed limit:
  - Reveals biases in dielectric model, oxygen absorption, auxiliary input SST
  - The observed biases are small (≈0.1 K)
  - The causes have similar signature and are thus hard to separate on that level
- Moderate Higher wind speeds
  - Reveals biases in surface roughness model
  - Larger (up to 0.3K)
  - Assumption that the  $T_S$  dependence of  $\Delta E_W$  can be modeled by the specular emissivity  $E_0$  breaks down at high  $T_S$

### **Going Forward**

- Tweaking dielectric model  $\varepsilon$  or oxygen absorption model  $A_0$ 
  - Likely futile.
  - Very small (0.1 K).
  - Ambiguous signature.
  - Physics of electromagnetic radiation has consequences at higher frequencies, which would need to be reanalyzed.
- Most important step in mitigating the large scale ST dependent biased is to adjust the SST dependence of ΔE<sub>W</sub>

$$\Delta T_B(W, T_S) \approx \beta(T_S) + \delta'(T_S) \cdot \alpha(W) \cdot T_S$$

Small change in  $\varepsilon$  or  $A_0$ 

adjust SST dependence of  $\Delta E_{W}$ 

## **Backup Slides**

## Performance: Local Biases www.remss.com

Aquarius - ARGO

Latitude

2-year: 09/2011 - 08/2013

Month





- Fresh biases in tropics and subtropics.
- Salty biases at mid-high latitudes.
  - Biggest in N Pacific.
- Seasonal pattern.

### SST Dependent Biases

### Post-hoc Correction (1)



- Rain has been filtered out. Bias is not due to stratification.
- Sensor calibration: Aquarius is globally adjusted to HYCOM. Rain is not filtered when running calibration, which makes Aquarius too salty. But the effect is very small for global average: 0.04 psu.
- Not caused by residual RFI contamination: Aggressive filtering for possible RFI (see S. Brown) does not change it significantly.



# Impact on Performance Triple Colocation Statistics Global. Rain Filtered

| AQ – HYCOM – ADPRC ARGO Differences σ [psu] 3° monthly averages |                     |                    |                 |  |  |
|-----------------------------------------------------------------|---------------------|--------------------|-----------------|--|--|
|                                                                 | AQUARIUS –<br>HYCOM | AQUARIUS –<br>ARGO | HYCOM –<br>ARGO |  |  |
| V3.0                                                            | 0.29                | 0.31               | 0.25            |  |  |
| SST Bias adjusted                                               | 0.24                | 0.27               | 0.25            |  |  |

Estimated Individual Errors  $\sigma$  [psu] AQ – HYCOM – ADPRC ARGO  $\sigma$  [psu] 3° monthly averages

(1.5° monthly averages)

|                   | AQUARIUS    | нүсом | ARGO |
|-------------------|-------------|-------|------|
| V3.0              | 0.24 (0.27) | 0.16  | 0.19 |
| SST bias adjusted | 0.18 (0.22) | 0.16  | 0.19 |