

ESR BATTER

The salinity signal of the shelf-deep ocean exchange in the SWA: Satellite observations

Raul A. Guerrero¹, Alberto R. Piola^{2,7}, Harold Fenco¹, Ricardo P. Matano³, Vincent Combes³, Yi Chao^{4,5}, Corinne James³, Elbio D. Palma⁶, Martin Saraceno⁷, and P. Ted Strub³

 ¹ Instituto Nacional de Investigacion y Desarrollo Pesquero, Argentina
² Servicio de Hidrografia Naval and Departamento de Ciencias de la Atmosfera y los Oceanos, Universidad de Buenos Aires and UMI/IFAECI, CONICET, Argentina
³ College of Earth, Ocean and Atmospheric Sciences, Oregon State, USA

 ⁴ Remote Sensing Solutions, Inc., Pasadena, California
 ⁵oUniversity of California, Los Angeles, California, USA
 ⁶ Universidad Nacional del Sur and Instituto Argentino de Oceanografia, Argentina

⁷ Departamento de Ciencias de la Atmosfera y los Oceanos, Universidad de Buenos Aires, and UMI/IFAECI, CONICET, Argentina

> 9th Aquarius/SAC-D Sc. Meeting Seattle, USA Nov. 2014

Mean SSS-Aquarius

L3 (v2.0) -SSS from Aquarius shows the main ocean-basin features of the South Atlantic, already proven since the early results of the mission.

Stand. Deviation of SSS-Aquarius

The export of shelf waters to the deep ocean near 35°S creates the largest signal of SSS variability in the SA (south of the tropics).

SWAA Shelf Deergoceann SSSingitu

PPW Plata Plume Water

SASW Subant. Shelf Water

STSW Subtrop. Shelf Water

> Deep ocean (>200m) upper 50m water

MESO-SCALE processes

time scales \rightarrow weeks Spatial scales \rightarrow 100 km

Remote SST Remote SSH Remote SSS

A Challenge for Aquarius??? Gridding technique:

Local polynomial (Lilly and lagerloef (2008)

Individual polynomial adjustments every search radius; optimizing in its environment for a better representation of the local variation

In either case SEAM TO BE IMPROVEMENTS in the error levels

New L3 weekly for Dec11-2011 Aquarius (a) and SMOS (b)

-LSW → deep ocean Aquarius & SMOS

-Cyclonic (C2; C3) -Anti-cyclinic rings (A1)

-Validated by: Surface curr. (OSCAR) SST (Modis) Chla (modis) Time serie 27Nov-2011 / 1Jan-2012 Evolution of a Low SSS intrusion into the deep ocean and tracking of warn-salty and cold-fresh rings

SSS variability along tracks (cross shelf break)

b2a 2

Time series of SSSaq at central track

SSSAq and SMOSa) Outer shelf (point 3)b) Slope (Point 4)

Wind stress (Area "d") C) ASCAT along shelf (obs and 2008-13 daily mean). d) ASCAT WS anomaly (along.S.)

e) Rio de la Plata discharge

Seasonal SSS: Fresher Spring and summer Saltier Autumn and winter

SSS < 33.5 crossing the 200m

- Mostly spring-summer time
- When Wind stress reverse to SE

- No obvios influence from RdP disch

Detrainment events (SSS<33.5 crossing 200m)

Aquarius	Start date	Week	555	555	Event	Overlappe	SMOS	Start date	Weeks 5<33.5	SSS min	555 mean	Event number	Overlapped Aquarius
Track		s at 200m	min	mean	number	d SMOS	region						
Northann	22 Nov	12	221	33 1	24	65	Northern	09 Feb 2010	3.7	33.0	33.2	15	
(NT)	2011	4.2	55.1	55.4		03	(point o)	07 May 2010	8.4	32.5	32.9	25	
	3 Jan 2012	3.4	33.0	33.3	3A	75		11 Aug 2010	16.0	32.1	32.9	35	
	21 Aug	50	32.3	33.0	4A	85		12 Dec 2010	6.3	32.5	32.9	45	-
	2012	0.0	02.0	00.0				17 Sep 2011 22 Nov 2011	6.0 2.1	32.5 33.1	33.0 33.2	55 65	1A 2A
	8 Jan 2013	39	321	32.8	6A	10.5							
	9 Oct 2012	7.0	21.4	22.7	7.4	110		25 Dec 2011	3.7	33.0	33.3	75	3A
	8 001 2013	7.0	51.0	52.1	14	115		12 Ago 2012	<mark>4</mark> .6	32.7	33.0	85	4 <i>A</i>
	17 Dec 2013	4.9	31.9	33.1	8 <i>A</i>								
Central (CT)	08 Oct	7.3	28.6	32,2	2A	55		25 Nov 2012	2.6	32.8	33.1	95	
	2011							22.5. 2012		22.0	22.0	100	
	7 Jan	7.7	30.4	31.8	3A	55		22 Dec 2012	5.0	32.8	33.0	105	6A 74
	2012						Control	10 Jan 2010	70	32.1	33.0	115	74
	17 Nov	54	32 5	33.0	54	95	(point 4)	3 Tun 2010	2.6	32.7	32.7	25	
	2012	1.1	JE.J	00.0	3/1	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		19 Sep 2010	5.6	32.4	32.4	35	
	LOIL							6 Dec 2010	15.0	31.7	31.7	45	
	19 Jan 2013	8.1	30.6	32.4	6A			5 Sep 2011	24.0	31.0	31.0	55 65 75*	1A 2A 3A
	19 Oct 2013	7.2	32.6	33.0	7A	115		13 Nov 2012	15.1	32.3	32.3	95	5A
	28 Dec	26	325	33.0	84	_							
	2013	_	02.0	00.0				6 Sep 2013	11.9	32.6	32.6	115	8A
Southann	1 San 2011	20	32.0	32.0	1.4	БC	Southern	9 Feb 2010	4.1	32.8	33.2	15	
Journern (cT)	1 Sep 2011	2.9	32.9	52.9		-	(point 2)	10 Oct 2010	2.5	33.2	33.3	35	
(31)	19 Nov 2011	6.5	31.1	31.9	2A	55		18 Dec 2010	13.7	31.0	32.2	45	
								2 Oct 2011	26.3	30.6	32.5	55 65 75*	1A 2A 3A
	14 Jan 2012	6.6	29.8	31.4	3 <i>A</i>	55		16 Nov 2012	5.1	32.6	33.0	95	74

Summer mean SSSag anomaly and dynamic topography anomaly

LSW along the BMC Obs: Gordon 1989 Provost et al. 1996 Modelling: Palma et al. 2008

SSSaq and Smos LSW derives from RdIP Driven by the BMC and occurs mostly in late spring and summer.

Location ~ $37^{\circ}S \rightarrow In$ agreemment with numerical simulations (Matano et al., 2014)

Winter SSS fields and anomalies (Smos and Aquarius)

into the deep ocean (in contrast to Brazil Water) resulting in a warm variety of Shelf Waters (Gordon 1989; Piola et al., 2008)

simulations

(Matano et al.,

2014)

Summary and Conclusions

> Aquarius and SMOS SSS capture the detrainment of shelf waters into the deep ocean

> The export of shelf waters near the RdIP causes the strongest salinity signal throughout the South Atlantic (south of 10°5)

> The detrainments of low-salinity waters present a strong seasonal signal which is associated with the alongshore wind stress variability over the shelf: Summer \rightarrow 36-37°S; Winter 27-35°S

> The low-salinity waters cause an extensive negative salinity anomaly whose core follows the path of the BMC

> The general agreement with the numerical simulations and in situ observations indicate an outstanding overall performance of the satellite-based salinity sensors