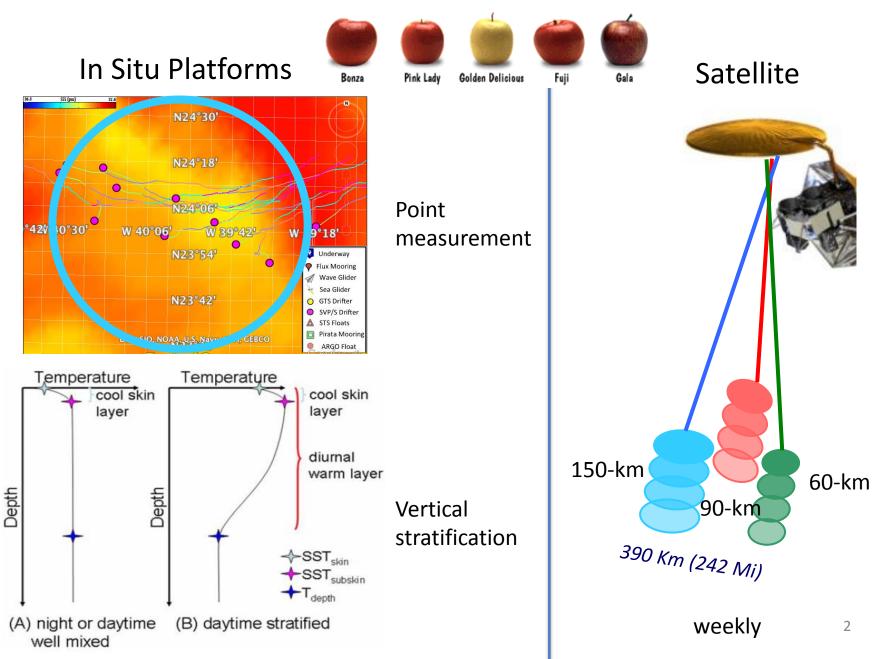
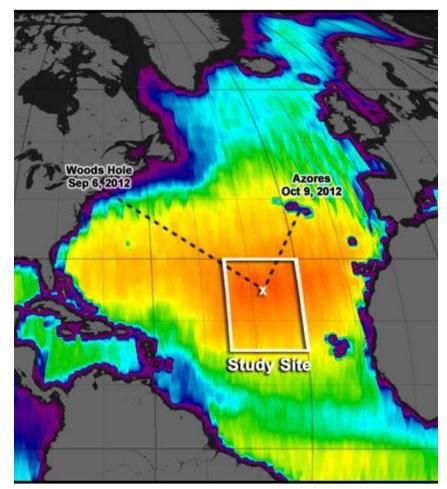
Validation of Aquarius Sea Surface Salinity Data with In Situ Measurements from the SPURS Field Experiment


Yi Chao (Remote Sensing Solutions) and Carrie Zhang (UCLA)

Data provided by: Tom Farrar (WHOI Mooring) Dave Fratantoni and Ben Hodges (WHOI Wave Gliders) Luca Centurioni (SIO/UCSD Drifters)

Thanks to:

SPURS Data Management: Frederick Bingham (UNCW) Aquarius Project, JPL PODAAC, SPURS Science Teams


Challenges in Aquarius Validation

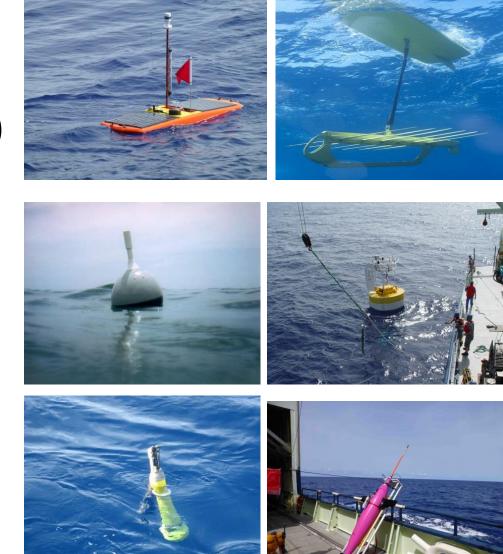
- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

Salinity Processes in the Upper Ocean Regional Study (SPURS)

- Five (5) cruises during September 2012 – October 2013
- Thalassa/Frence-2012 (8/16 -9/13)
- 2. Knorr/US-2012 (9/6 10/9)
- Sarmiento/Spain-2013 (3/14 - 4/20)
- Endeavour/US-2013spring (3/14 – 4/14)
- 5. Endeavour/US Cruise-2013fall (9/19-10/10)

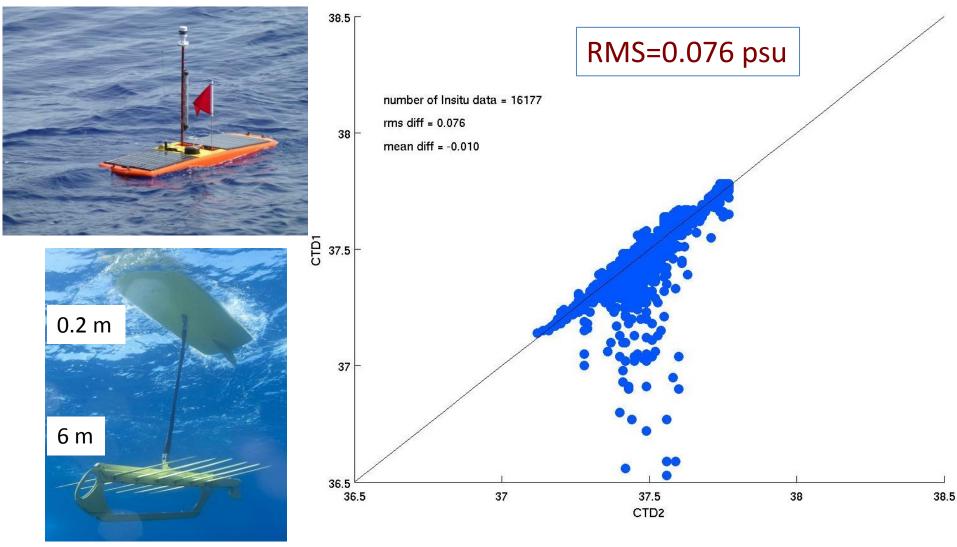
SPURS Salinity Measurements from Surface to 10 meters Depth

- Waveglider-1: 0.2
- Drifter: 0.5
- WHOI Mooring: 0.75 (2)

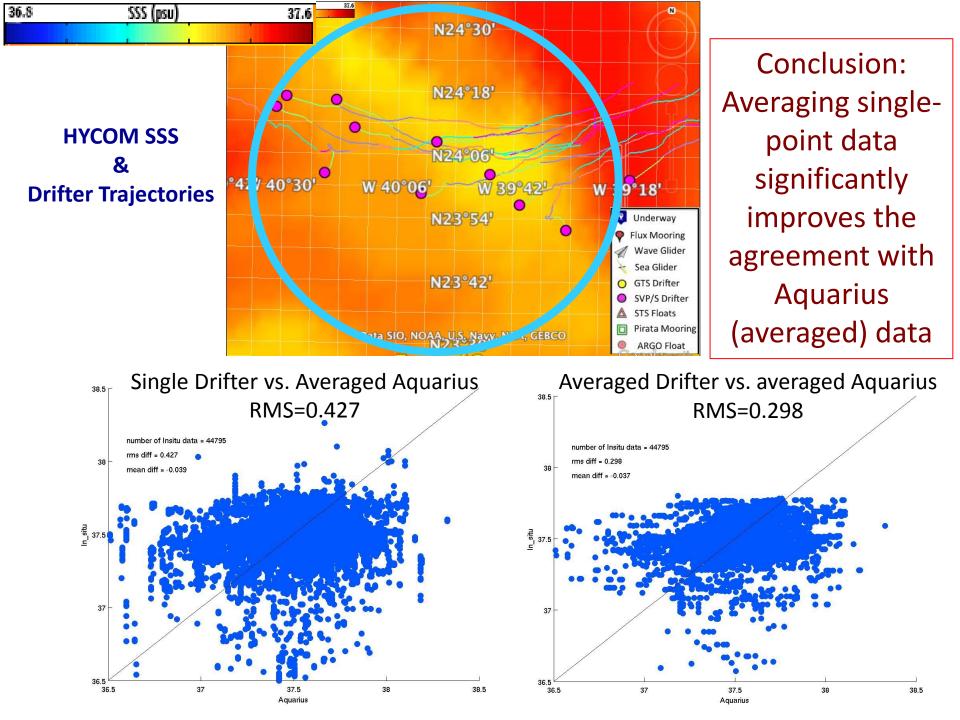

2.1 5.2

8.0

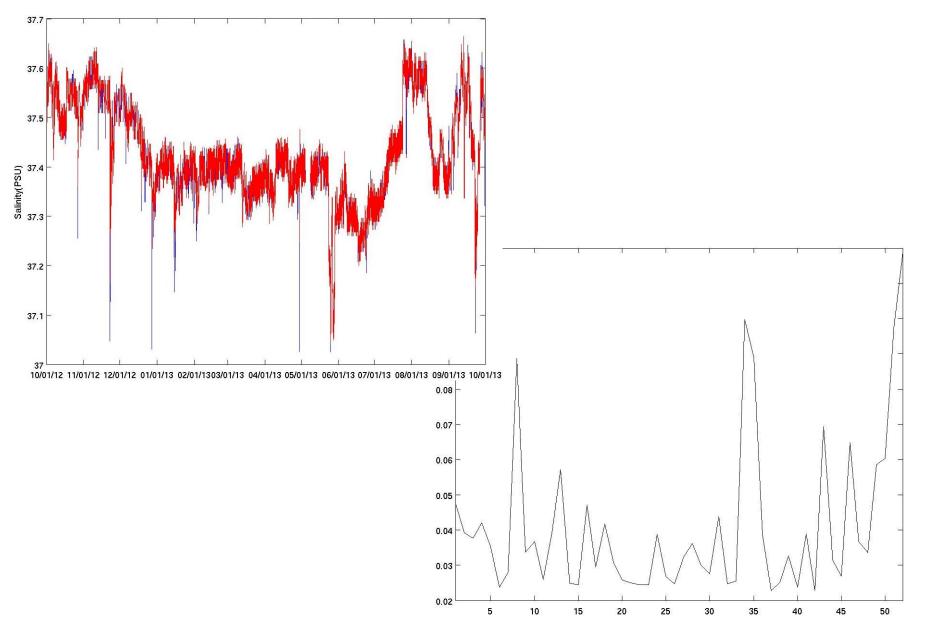
3-10


6

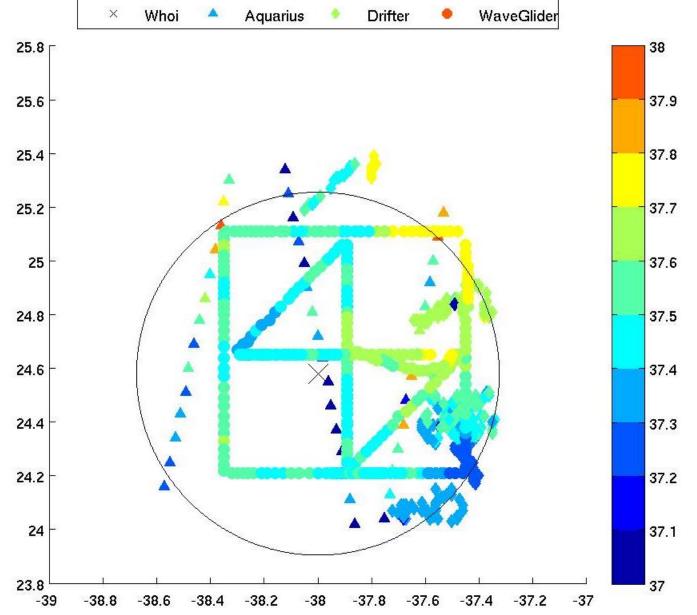
- Waveglider-2:
- STS Float: 0-3
- Seaglider: 0-10


- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

Vertical Stratification: Wave Glider CTD-1(0.2m) vs. CTD-2 (6m)

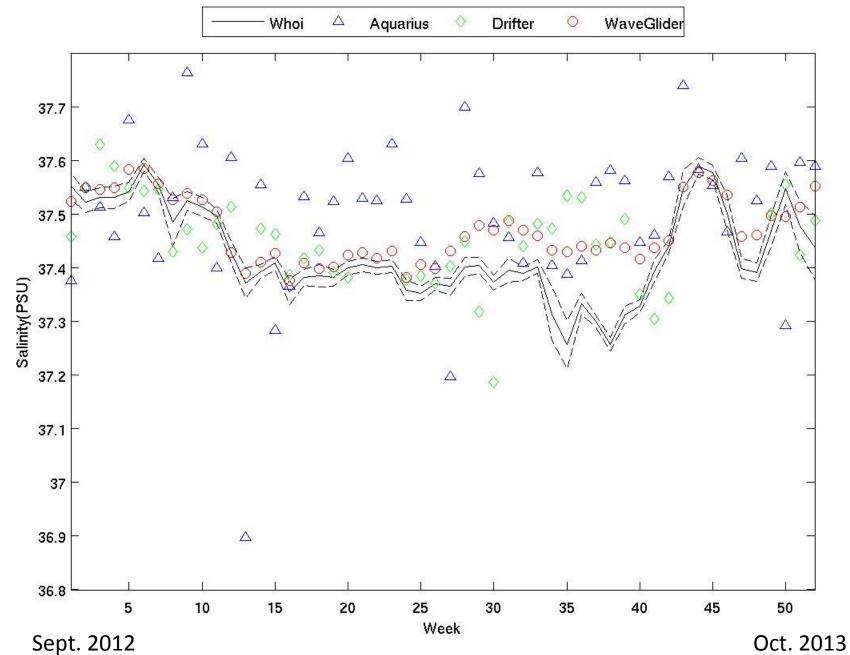

Wave Glider

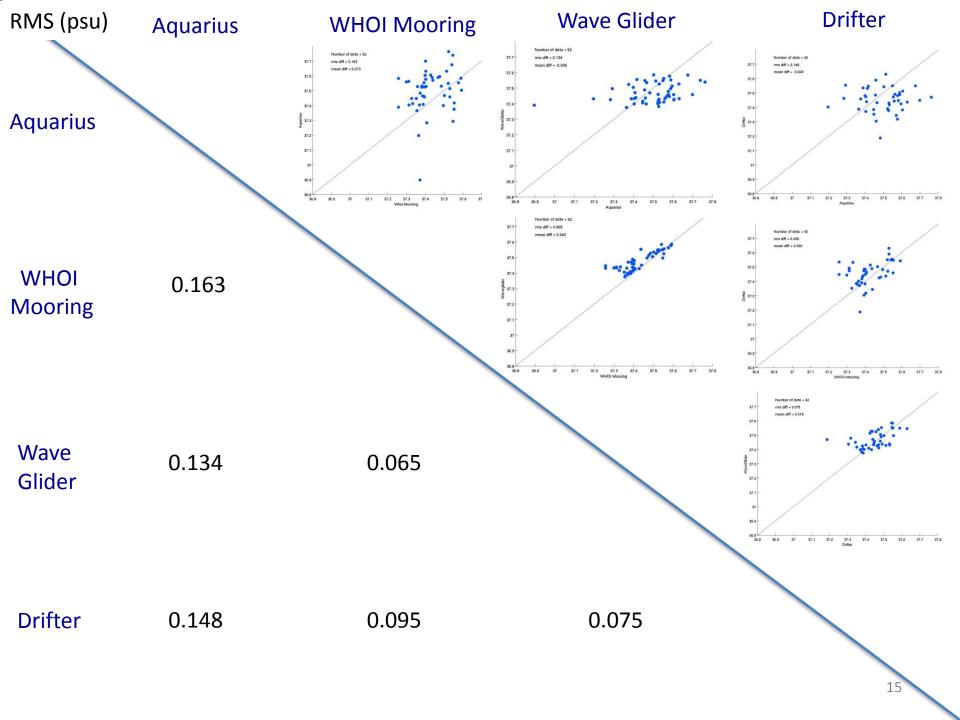
- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?


- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km
 & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?

Sub-weekly variations from WHOI mooring

- What is the Aquarius retrieved data error in the SPURS region?
- What is the ground-truth salinity over 150-km & week?
 - Vertical stratification between the surface skin layer (~ 1 cm) and the near surface layer (~10 m)
 - Variability within the Aquarius footprint (150-km)
 - Variability within the weekly (Aquarius repeat time) time scale?


SPURS In Situ Measurements



Aquarius

Aquarius & SPURS In Situ SSS (150-km, weekly)

Triple-Point Analysis

Formulation:

 $S_A = S \pm e_A$ $S_1 = S \pm e_1$ $S_2 = S \pm e_2$

If e_A and e_1 are uncorrelated, then

$$<\Delta S_{A-1}^{2} > = + <\Delta S_{A-2}^{2} > = + <\Delta S_{1-2}^{2} > = +$$

Solving above equations, then

 $< e_A^2 > = \{ < \Delta S_{A-1}^2 > + < \Delta S_{A-2}^2 > - < \Delta S_{1-2}^2 > \}/2$

Triple-Point Analysis

Formulation:

- $S_A = S \pm e_A$ $S_1 = S \pm e_1$ $S_2 = S \pm e_2$
- If e_A and e_1 are uncorrelated, then

$$<\Delta S_{A-1}^{2} > = +$$

$$<\Delta S_{A-2}^{2} > = +$$

$$<\Delta S_{1-2}^{2} > = +$$

Solving above equations, then

 $<e_A^2> = \{<\Delta S_{A-1}^2> + <\Delta S_{A-2}^2> - <\Delta S_{1-2}^2>\}/2$

Aquarius Data Retrieval Error (psu):

[Aquarius, Drifter, Wave Glider]

0.13

[Aquarius, WHOI Mooring, Wave Glider]

0.14

[Aquarius, WHOI Mooring, Drifter]

0.14

Triple-Point Analysis

Formulation:

 $S_A = S \pm e_A$ $S_1 = S \pm e_1$ $S_2 = S \pm e_2$

If e_A and e_1 are uncorrelated, then

$$<\Delta S_{A-1}^{2} =$$

$$<\Delta S_{A-2}^{2} =$$

$$<\Delta S_{1-2}^{2} =$$

Solving above equations, then

Aquarius Data Retrieval Error (psu):

[Aquarius, Drifter, Wave Glider]

0.13

[Aquarius, WHOI Mooring, Wave Glider]

0.14

[Aquarius, WHOI Mooring, Drifter]

0.14

$$= \{<\Delta S_{A-1}^2> + <\Delta S_{A-2}^2> - <\Delta S_{1-2}^2>\}/2$$

Errors for drifter, mooring and wave glider are 0.072, 0.062, & 0.02 psu, respectively

Aquarius meets the accuracy requirement in the SPURS region!

Aquarius retrieved weekly data error is 0.13-0.14 psu near 25°N/38°W, & is smaller than the monthly allocation of 0.16 psu at this latitude.

					rms of Aquarius V2.5.1 - In situ								
Latitude Range	Mean Sensitivity (dT _v /dS)	Mean # Samples in 28 Days	Baseline Mission Monthly Salinity Error (psu)		50				4	ÿ,		~ ~	
			Allocation	CBE	40 -				80	10	1 .	່ <mark> </mark> ໃ	
0-10	0.756	10.9	0.15	0.11	35 - 35	1	8	87			Ű.	ّے 📲	
11–20	0.731	11.3	0.16	0.11	30 -	2					4	. 8	
21-30	0.671	12.1	0.16	0.12	25-3 [°] ,	ų.		20	*		.	/	
31-40	0.567	13.5	0.18	0.13	20-22-2		τę	9 2				}	
1-50	0.455	15.9	0.21	0.15	15 -	343			12	•		X -	
51-60	0.357	20.3	0.24	0.17	10	j~~	~u	1	8	140	Ξ.		
61–70	0.271	30.2	0.26	0.18	5-		<u>`</u>	$\sum_{i=1}^{n}$	40	22	200		
	G	lobal RMS (psu)	0.20	0.14	0 ^ℓ -80 -	- 70	-60) -50	-40	-30	-20	-10	

RMS=0.25 psu (from Hsun-Ying Kao) ---

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

(Lagerloef et al., 2008)

SUMMARY & CONCLUSIONS

- Variability that cannot be resolved by Aquarius and in situ measurements
 - 0.05 to 0.1 psu associated with the vertical stratification (between surface < 1 m and near surface 3-10 m)
 - 0.1 psu associated with sub-footprint (150-km) variations
 - 0.05 psu associated with the sub-weekly fluctuations
- In the SPURS region near 25°N and 38°W, the Aquarius retrieved weekly data error is estimated as 0.13-0.14 psu (smaller than the 0.16 psu allocated for the monthly error), meeting the accuracy requirement!

FUTURE WORK

- Re-do the analysis with delayed mode data
 - WHOI mooring (redundant sensor at 0.75 m; sensors at 2.1, 5.2, 8.0 meters)
 - UCSD/SIO drifters (CTD sensor drift after 6 months)
- Include data from
 - STS floats (Steve Riser, UW)
 - Seagliders (Craig Lee, UW)
- How can we apply lessons learned from SPURS in the global Aquarius validation?

Thanks!

Questions?

Contact Information: Yi Chao ychao001@gmail.com 626-602-6186