

Assessment of the Version 6 MWR Calibration

Shannon Brown Jet Propulsion Laboratory, California Institute of Technology 11/13/2013

- MWR can be used to retrieve water vapor, cloud liquid water, wind and rain over the ocean
 - Can supplement Aquarius retrieval algorithm
 - Roughness correction
 - Rain flagging/correction
- Objective is to apply techniques used to calibrate the Jason series altimeter radiometers to MWR
 - Compare TBs to natural on-Earth references
 - Assess stability over time
- Since MWR swath is formed from independent beams, it is critical to assess inter-beam calibration biases over the full dynamic range of the instrument

- Compare T_B to hot and cold absolute brightness temperature references
 - Vicarious Cold Reference (Ruf, 2000, TGARS)
 - Stable, statistical lower bound on ocean surface brightness temperature
 - Amazon pseudo-blackbody regions (18-40 GHz) (Brown and Ruf, 2005, JTECH)
 - T_{HOT}(frequency, incidence angle, Local Time, Time of year)

• Sample references over time and instrument temperature

- Cold reference represents a statistical lower bound on ocean surface brighness temperature
 - Warmest TB that has a 0% probability of occurring
 - Condition exists for calm, dry conditions at an optimum SST
- Theoretical values determined from a radiative transfer model used with open ocean island radiosonde observations
 - Absolute uncertainty between models at ~1K level

Theoretical Vicarious Cold Reference (K)	23H	37V	37H
EIA 52°	108.4	198.4	132.1
EIA 58°	104.8	212.4	126.9

- Theoretical value for Amazon regions determined from model tuned to SSM/I observations
 - Strong diurnal component (~6K) and weak annual component (<2K)
- Uncertainty in model estimated to be ~1K

Theoretical Amazon Hot Reference (K)	23H	37V	37H
EIA 52°	286.9	283.5	283.5
EIA 58°	286.8	283.3	283.3

Incidence Angle

Average Reference Temperature for Region 2 versus Frequency and Incidence

MWR VCR Compared to Theoretical Values

37V	Beam 1	Beam 3	Beam 5	Beam 7
	Beam 2	Beam 4	Beam 6	Beam8
EIA 52º	200.9	201.0	200.3	200.5
EIA 58°	213.6	212.9	212.7	213.2
37H				
EIA 52°	129.1	129.7	129.2	129.0
EIA 58°	123.9	124.0	124.3	123.6

37V	Beam 1	Beam 3	Beam 5	Beam 7
	Beam 2	Beam 4	Beam 6	Beam8
EIA 52º	2.5	2.6	1.9	2.1
EIA 58°	1.2	0.5	0.3	0.8
	-			
37H				
EIA 52º	-3.0	-2.4	-2.9	-3.1
EIA 58º	-3.0	-2.9	-2.6	-3.3

23H	Beam 1	Beam 3	Beam 5	Beam 7
	Beam 2	Beam 4	Beam 6	Beam8
EIA 52°	284.8 (-2.1)	286.8 (-0.1)	286.6 (-0.3)	285.8 (-1.1)
EIA 58°	286.5 (-0.3)	286.2 (-0.6)	286.6 (-0.2)	286.7 (-0.1)
37V				
EIA 52°	284.6 (1.1)	284.8 (1.3)	284.5 (1.0)	285.8 (2.3)
EIA 58°	284.9 (1.6)	284.8 (1.5)	285.2 (1.9)	285.4 (2.1)
37H				
EIA 52°	284.8 (1.3)	284.7 (1.2)	284.4 (0.9)	285.9 (2.4)
EIA 58°	286.7 (3.4)	286.2 (2.9)	286.6 (3.3)	286.9 (3.6)

VCR Stability Over Time

VCR Stability Over Time

VCR CH2 B5 vs Ref Cnts Error in non-linearity correction? VCR Ch2 B5 ٠. ٠. **Ref Cnts**

- Important to assess relative calibration between beams over the on-Earth dynamic range of TB
- Applied method that finds homogeneous areas over the ocean and land where observations across the region are uncorrelated with observing location
 - the long term average will reduce to a common mean for each MWR beam at common incidence angle
- Basic assumption is that over short distances, the difference between at two points is uncorrelated with brightness temperature level and has zero mean

$$\frac{1}{N} \sum_{i=1}^{N} \left(T_{Bi}(x) - T_{Bi}(x + \Delta x) \right) = 0$$

- MWR data averaged in 2.5 x 2.5 degree grid boxes
- Boxes with large along-track spatial variability are excluded to select calm homogeneous conditions
 - Along track stability a proxy for cross track stability
- Inhomogeneous scenes, such as sea ice are also excluded
- Over time, the observations across the region will reduce to a common mean for each MWR beam at common incidence angle allowing an inter-beam assessment over the full dynamic range
- Comparisons are shown relative to beam 1 and beam 2 for each channel for version 6 beta 2

- i.e. beam 1 vs 3,5,7 and beam 2 vs 4,6,8

23.8 GHz – Hpol Beam 1 vs 3,5,7

0 0

23.8 GHz – Hpol Beam 2 vs 4,6,8

°0 ° C (Beam2+Beam4)/2 TB (K) MWR TB Beam Intercomparison for Channel 1 o 180 200 (Beam2+Beam6)/2 TB (K) MWR TB Beam Intercomparison for Channel 1

- A non-linearity correction was applied to version 6 (Ghazi et al. 10/29/2013 cal/val presentation)
- For the 23.8 GHz channel, the linearity correction was applied in version 6 beta
 2, but not beta 1
- A non-linear relative bias between beams 1 and 3 for the 23.8 GHz channel is clear in beta 1
- It is still present in beta 2, but significantly reduced

37 GHz – Hpol Beam 1 vs 3,5,7

37 GHz – Vpol Beam 1 vs 3,5,7

• •

270 280

- MWR calibration within about 2-3 K of the on-Earth reference models
 - ~0.5 K level inter-beam biases observed over the reference regions
- 37 GHz TBs stable in time to ~1K from September'12 to April'13
 - Exception is 37V beam 5 possible non-linearity correction error?
- Inter-beam comparison method shows non-linear inter-beam biases
 - 37 GHz channel shows better inter-beam calibration (biases < 0.5 K)
 - 23.8 GHz channel show significantly more inter-beam bias (>1K at the warm end), but version 6 non-linearity correction show definitive improvement
- Version 6 shows continued improvement from earlier MWR data