#### **Observation of Salinity Gradients in the Top Five Meters of the Ocean Surface**



William Asher, Andrew Jessup, Ruth Branch, and Dan Clark Applied Physics Laboratory University of Washington Seattle, Washington

Project funded by NASA Aquarius Program: Grant NNX09AU73G

## Why are salinity gradients at the ocean surface important?





### How do salinity gradients form?



#### Measuring salinity gradients: The Surface Salinity Profiler (SSP)





Instrumented with: 0.05 m Seabird 49 CTD 0.20 m Seabird 49 CTD 1.00 m Seabird 49 CTD 2.00 m Seabird 19 CTD Towed from ship Follows surface at tow speeds of 2 m/s Rides outboard of wake Instruments mounted on rigid keel



## The underway salinity gradient instrument package on the *R/V Thomas G. Thompson*









#### Measuring salinity gradients in the equatorial Pacific Ocean using the SSP

SSP deployed from the *R/V Kilo Moana* 

Cruise conducted December 6-16, 2011

Sailed from Apia, Western Samoa to Honolulu, Hawaii

Deployed the SSP a total of eight times

Sampled 3 main rain events



### Ship Track for *R/V Thompson* During JOCMS November-December, 2011, North Pacific Ocean





#### **Salinity profiles and gradients**



The point is a gradient at 2-3 m is much bigger at the surface.

#### **Underway salinity measurements:** *R/V Thomson*



#### **Comparing SSP and Underway salinity data**



## Why Might 0.04 psu/m Be a Magic Number?



#### **Statistics of Gradients from the Underway System**





#### **Estimating the Effect of Gradients on Salinity**



Using the SSM Model:

$$S_{\text{EFF}} = S_{\text{GRAD}}A_{\text{GRAD}} + S_{\text{TRUE}}(1 - A_{\text{GRAD}})$$
$$S_{\text{EFF}} = 34.5 \text{ psu} \qquad \text{for} \qquad S_{\text{TRUE}} = 35 \text{ psu} \qquad A_{\text{GRAD}} = 0.095$$

Using the SAWSM get:

 $S_{\rm EFF} = 34.8 \text{ psu}$ 

#### **Conclusions, Future Directions**



- 1. Rain generates measurable near-surface (top 0.5 m) salinity gradients that can form at wind speeds up to 10 m/s
- 2. These gradients are large enough (in terms of their area-weighted  $\Delta S$ ) to affect Aquarius
- 3. Extend over large enough areas to affect satellite measurements
- 4. The 2-m and 3-m ports on the *R/V Thomson* can detect the presence of near-surface salinity gradients relevant for Aquarius

# The Surface Salinity Profiler (SSP) in tow from the *R/V Thomas G. Thompson*



