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dSSS triple cellocation estimate

open ocean, very strict Q/C (exclude cold water, high winds, RFlI mask, ...)
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Purpose

Any meaningful physical measurement has a value and an uncertainty
(error bar).

* Required nowadays for many studies (ROSES calls).
* Not easy. Not straightforward. Reality is far behind.

Important for ocean modeling who use Aquarius salinity as input in
their model.

* Determines relative weight of observation in assimilation.

Creating L.3 maps.

» Appropriate weighting of L2 observations.
Identifying degraded conditions.
Uncertainty estimates are needed for both L2 and L3.

Aquarius has only few channels and essentially only one observation
(salinity).

But it also has lots of error sources that need to be considered!
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Formal Method in a Nutshell

Formal parameter in the physical salinity retrieval algorithm: A.

 NEDT, SST auxiliary field, wind speed (roughness correction), galaxy, moon,
land, RF], ...

* Independent.

Physical model for uncertainty AA.
* Physical retrieval has physical error.
e (Can be scene dependent.
* Must be realistic! NOT worst case!
* Error model is developed off-line.
* Not always straightforward and unequivocal.
* Some components are based on SSS input from ground truth.

Run perturbed retrieval for L2 salinity S

» Separate for each parameter A.

. . . as S(A+e€)—-S(A—¢
e Determine derivative: — = (@+e)-S( ).

i) 2¢€
* Depends on scene: SST, wind speed, wind direction, ....
: : : d0S
Uncertainty in S due to error in A: AS; = 7 A)L‘.

Total uncertainty: (AS)? = Y:,(AS;)?.
Compare with empirical error: ARGO, HYCOM, PMEL, ....
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Random versus Systematic Errors

o Observed Aquarius salinity errors

o L3 errors do not reduce when averaging over 3 months.

o At L2 random and systematic errors are roughly of the same size.
0 ll\/lost of the error observed at LL3 is not a random error and does not reduce with
/yw -

o Physical error model needs to distinguish between random and
(quasi - ) systematic errors.

* Need to estimate systematic and random errors.
* Propagate differently from L2 to L3.
. : 1

Random errors: Get reduced by /\/N

* Quasi-systematic errors: Stay constant over time scales of
1 week - 3 months and within 100 - 150 km.
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Error Propagation + Correlations

| é(

o Independent random errors at L2 are added in the rms
sense: (AS)% = Y, (ASy)“.

o Independent systematic errors at L2:

 (Conservative method: Add absolute values.

« Standard method: Can be of either sign. Treat them like random
errors (add rms). I have adopted this method.

o Correlations need to be taken into account in perturbed
retrievals. For example:

 NEDT: V-pol and H-pol independent. When performing the
perturbed retrieval, they are treated as two separate parameters A
and perturbed independently.

* Error in galaxy: V-pol and H-pol are not independent. There is only
one independent parameter, say the V-pol component TA,,, ;-
When performing the perturbed retrieval, only the V-pol gets
perturbed and the H-pol is calculated from the perturbed V-pol.
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¥ Error Propagation in L3 Averaging

Assume we have N observations:
S;,i = 1, ... N, which have all the same random error (4S5),,, and the same
systematic error (45)y .

Estimation theory: Best estimate (maximum probability) is the mean:

Y
|
S — NZSL
i=1

Standard deviation of the mean (uncertainty of the average):

N = 2
_ aS (4S)ran
(AS )ran = [_ ’ (ASi,ran)] -
\J; IAY VN

Total systematic error:

N
_ 1
(AS )sys = NE'(AS)i,sys| = (AS)sys
=l

This can be straightforwardly generalized if the errors of the single
observations are not equal or if a weighted average is taken.

Consider optimum weighting in L3 averaging:
Weight by inverse variance (square error).
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included

e

NEDT (V, H, S3) ran all 3 polarizations are treated
independently
calculated in count to TA algorithm
apply front end losses

divide by \/(# of obs in 1.44 sec)

wind speed / roughness correction ran + sys see error model

wind direction (auxiliary) ran 10 deg random error in NCEP
SST (auxiliary) Ssys WindSat — Reynolds weekly
IU coupling sys see error model

galactic reflection Ssys
see error model

lunar reflection Ssys
V-pol and H-pol are correlated

land contamination SysS

sea ice contamination Sys

RFI Sys treated on SSS level
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neglected/not considered

EIA / pointing small. estimated from difference between
nominal (nadir) and actual pointing

APC ran + sys not considered (beside IU coupling)
assumed to be calibrated correctly to

libration system ran +
calibration syste an + sys ocean RTM

RTM: dielectric, O, ,wind emissivity sys assumed that the SST dependent biases
are corrected

atmosphere: O, Ssys small. estimated sensitivity of SSS to
atmospheric temperature error at most
0.05 psu/K.

atmosphere: water vapor signal itself is already small

atmosphere: rain, cloud sizeable in very heavy rain (0.2 psu too
fresh at 10 mm/h)
not accessible as long as only NCEP cloud
water is used in L2 algorithm

sun signal itself is already small

direct galactic not considered
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Wind Speed / Roughness Correction

wind speed errar model
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Black line: systematic component (AQ HHH — WindSat).

Red Line: random component (AQ HHH — WindSat). Divide by /2.

Red dashes: random error model for AQ HHH wind speed |

K, value for o,,,, NEDT for TBH, error in NCEP background field, wind direction, ...).
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Based on ground truth (HYCOM).
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Land Contamination

TB sur meas — exp (BIAS) [K] V B Sur meas — exp (SDE\/) [ IR
L I UL UL IR N

K
T

subtract "noise floor"

109 16%1and 109 161ang

TB measured — expected. Based on ground truth (HYCOM).
Total RMS treated as systematic error.
V/H —pols correlated in perturbed retrievals.
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Estimated Undetected RFI

SEP 2011 — AUG 2014
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Estimated Undetected RFI
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V3.0/V3.4 use this to mask out undetected RFI.
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Formal Errors L2

formal uncertainties L2

r = random
s = systematic

NEDT (r) wspd (r) wdir {r) wspd (s) SST (s) U {s) galaxy (s) moon (s)
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Formal Errors L3

formal uncertainties L3

r = random
s = systematic

0.02
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NEDT (r) wspd (r) wdir {r) wspd (s) SST (s) U (s) galaxy (s) moon (s) RFI (=)
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Estimated L2 Uncertainty
Stratified with wind speed
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horn 1 horn 3
full lines: SSS AQ - HYCOM
dashed lines: formal estimate

wind speed [m/s]
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Estimated L2 Uncertainty
stratified with SST
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horn 1 horn 3
full lines: SSS AQ - HYCOM
dashed lines: formal estimate
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Estimated L3 Uncertainty
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EStlmated L3 Uncertalnt}ywemsscom
formal versus empirical: time series
open ocean + strict Q/C

triple collocation: AQ - HYCOM - ARGO
formal estimate
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Estimated L3 Uncertainty

open ocean + strict Q/C
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Empirical L3 Uncertainty
triple collocation map (AQ - HYCOM - ARGO)
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dS5S triple collocation estimate
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Estimated L3 Uncertainty

formal versus empirical map
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dSSS triple collocation estimate

Possible cancellation or enhancement of systematic errors in certain regions.
For example: errors in wind speed and auxiliary fields.

Improving one source for systematic errors (e.g. auxiliary SST) does not
necessarily show as an improvement everywhere.
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Summary and Reflections

We have derived an algorithm for estimating formal uncertainties to
our physical Aquarius salinity retrieval algorithm.

2 major components:

1.  Physical error model for each component of the salinity retrieval.

2.  Running perturbed retrievals: sensitivity of SSS to the various parameters.

The physical error model is developed off line.
e Will be delivered as collection of look-up tables.
* Some components need information from ground truth salinity (HYCOM)

* Tied to physical components of retrieval algorithm.
Keep track of uncertainty in each parameter.

Essential to separate random and systematic uncertainties.

* Propagate differently when forming L3 averages form L2 observations.

Results for both L2 and L3 uncertainty estimate compare very well
with empirical uncertainty estimates from ground truth.

» Triple collocation



