

Remote Sensing Systems www.remss.com

Formal Uncertainty Assessment in Aquarius Salinity Retrieval Algorithm

T. Meissner

Aquarius Cal/Val Meeting Santa Rosa March 31/April 1, 2015

Outline

Remote Sensing Systems

- 1. Background/Philosophy
- 2. Developing an Algorithm for Assessing Formal Uncertainties
 - o Level 2
 - o Level 3
- 3. Physical Error Model
 - o Description of Major Components
- 4. Results
 - Formal Versus Empirical Uncertainties

Aquarius L3 Performance Remote Sensing Systems Triple Collocation Series

RMS	V3.0	V3.0 bias adjusted	V3.4 (new GMF)		
	0.220	0.170	0.172		
open ocean, very strict Q/C (cold water, high winds, RFI mask,)					

Aquarius L3 Performance Remote Sensing Systems Triple Collocation Map

open ocean, very strict Q/C (exclude cold water, high winds, RFI mask, ...)

- Any meaningful physical measurement has a value and an uncertainty (error bar).
 - Required nowadays for many studies (ROSES calls).
 - Not easy. Not straightforward. Reality is far behind.
- Important for ocean modeling who use Aquarius salinity as input in their model.
 - Determines relative weight of observation in assimilation.
- Creating L3 maps.
 - Appropriate weighting of L2 observations.
- Identifying degraded conditions.
- Uncertainty estimates are needed for both L2 and L3.
- Aquarius has only few channels and essentially only one observation (salinity).
- But it also has lots of error sources that need to be considered!

Uncertainty Estimates Remote Sensing Systems www.remss.com

\circ Formal parameter in the physical salinity retrieval algorithm: λ .

- NEDT, SST auxiliary field, wind speed (roughness correction), galaxy, moon, land, RFI, ...
- Independent.

ο Physical model for uncertainty $\Delta \lambda$.

- Physical retrieval has physical error.
- Can be scene dependent.
- Must be realistic! NOT worst case!
- Error model is developed off-line.
- Not always straightforward and unequivocal.
- Some components are based on SSS input from ground truth.
- Run perturbed retrieval for L2 salinity *S*
 - Separate for each parameter λ.
 - Determine derivative: $\frac{\partial S}{\partial \lambda} = \frac{S(\lambda + \epsilon) S(\lambda \epsilon)}{2\epsilon}$.
 - Depends on scene: SST, wind speed, wind direction,
- Uncertainty in S due to error in λ : $\Delta S_{\lambda} = \left| \frac{\partial S}{\partial \lambda} \cdot \Delta \lambda \right|$.
- Total uncertainty: $(\Delta S)^2 = \sum_{\lambda} (\Delta S_{\lambda})^2$.
- Compare with empirical error: ARGO, HYCOM, PMEL,

Remote Sensing Systems www.remss.com Random versus Systematic Errors

Observed Aquarius salinity errors

	SSS AQ – HYCOM 1.44 sec σ (L2)	average # for monthly 1 deg average	$\frac{\sigma(L2)}{\sqrt{N}}$	σ (L3) (triple collocation analysis)
V3.0	0.40		0.05	0.23
V3.4	0.35	70	0.04	0.17

- L3 errors do not reduce when averaging over 3 months.
- At L2 random and systematic errors are roughly of the same size.
- $\circ~$ Most of the error observed at L3 is not a random error and does not reduce with $^{1}/_{\sqrt{N}}$.
- Physical error model needs to distinguish between random and (quasi -) systematic errors.
 - Need to estimate systematic and random errors.
 - Propagate differently from L2 to L3.
 - Random errors: Get reduced by $\frac{1}{\sqrt{N}}$.
 - Quasi-systematic errors: Stay constant over time scales of 1 week 3 months and within 100 150 km.

NASA

Error Propagation + Correlations

Remote Sensing Systems

- Independent random errors at L2 are added in the rms sense: $(\Delta S)^2 = \sum_{\lambda} (\Delta S_{\lambda})^2$.
- Independent systematic errors at L2:
 - Conservative method: Add absolute values.
 - Standard method: Can be of either sign. Treat them like random errors (add rms). I have adopted this method.
- Correlations need to be taken into account in perturbed retrievals. For example:
 - NEDT: V-pol and H-pol independent. When performing the perturbed retrieval, they are treated as two separate parameters λ and perturbed independently.
 - Error in galaxy: V-pol and H-pol are not independent. There is only one independent parameter, say the V-pol component TA_{gal,v-pol}. When performing the perturbed retrieval, only the V-pol gets perturbed and the H-pol is calculated from the perturbed V-pol.

Error Propagation in L3 Averaging .

- Assume we have *N* observations: $S_i, i = 1, ..., N$, which have all the same random error $(\Delta S)_{ran}$ and the same systematic error $(\Delta S)_{sys}$.
- Estimation theory: **Best estimate** (maximum probability) is the mean:

$$\bar{S} = \frac{1}{N} \sum_{i=1}^{N} S_i$$

• **Standard deviation of the mean** (uncertainty of the average):

$$(\Delta \bar{S})_{ran} = \sqrt{\sum_{i=1}^{N} \left[\frac{\partial \bar{S}}{\partial S_i} \cdot \left(\Delta S_{i,ran} \right) \right]^2} = \frac{(\Delta S)_{ran}}{\sqrt{N}}$$

• Total **systematic error**:

$$(\Delta \bar{S})_{sys} = \frac{1}{N} \sum_{i=1}^{N} \left| (\Delta S)_{i,sys} \right| = (\Delta S)_{sys}$$

- This can be straightforwardly generalized if the errors of the single observations are not equal or if a weighted average is taken.
- Consider optimum weighting in L3 averaging: Weight by inverse variance (square error).

Uncertainty Parameter Sensing Systems fincluded

λ	Type (ran/sys)		
NEDT (V, H, S3)	ran	all 3 polarizations are treated independently calculated in count to TA algorithm apply front end losses divide by $\sqrt{(\# \text{ of obs in 1.44 sec})}$	
wind speed / roughness correction	ran + sys	see error model	
wind direction (auxiliary)	ran	10 deg random error in NCEP	
SST (auxiliary)	sys	WindSat – Reynolds weekly	
IU coupling	sys	see error model	
galactic reflection	sys		
lunar reflection	sys	see error model	
land contamination	sys	v-por and n-por are correlated	
sea ice contamination	sys		
RFI	sys	treated on SSS level	

neglected/not considered

λ	Type(ran/sys)	
EIA / pointing	ran	small. estimated from difference between nominal (nadir) and actual pointing
APC	ran + sys	not considered (beside IU coupling)
calibration system	ran + sys	assumed to be calibrated correctly to ocean RTM
RTM: dielectric, O ₂ ,wind emissivity	sys	assumed that the SST dependent biases are corrected
atmosphere: O ₂	sys	small. estimated sensitivity of SSS to atmospheric temperature error at most 0.05 psu/K.
atmosphere: water vapor		signal itself is already small
atmosphere: rain, cloud	sys	sizeable in very heavy rain (0.2 psu too fresh at 10 mm/h) not accessible as long as only NCEP cloud water is used in L2 algorithm
sun	sys	signal itself is already small
direct galactic	sys	not considered

Error Model Remote Sensing Systems www.remss.com

Black line: systematic component (AQ HHH – WindSat). Red Line: random component (AQ HHH – WindSat). Divide by $\sqrt{2}$. Red dashes: random error model for AQ HHH wind speed (K_P value for σ_{OHH} , NEDT for TBH, error in NCEP background field, wind direction, ...).

Error Model Reflected Galaxy

Remote Sensing Systems www.remss.com

TA measured – expected. Based on ground truth (HYCOM).

Error Model IU Coupling

Remote Sensing Systems www.remss.com

horn 1	horn 2	horn 3	
non-linear rel	lation.		
can NOT be absorbed in APC IU			
couplings.			
TB measured – expected.			
Based on ground truth (HYCOM).			
Consider to correct in L2 algo.			

Remote Sensing Systems www.remss.com

horn 1 horn 2 horn 3

TB measured – expected. Based on ground truth (HYCOM). Total RMS treated as systematic error. V/H –pols correlated in perturbed retrievals.

Error Model Estimated Undetected RFI

3-year Aquarius SSS ascending - descending

Remote Sensing Systems www.remss.com

Error Model Estimated Undetected RFI

Remote Sensing Systems www.remss.com

in vicinity of RFI (TF – TA peak hold) SSS (asc – dsc) < 0: RFI in ascending swath SSS (asc – dsc) > 0: RFI in descending swath treated as systematic error for retrieved SSS

V3.0/V3.4 use this to mask out undetected RFI.

Formal Errors L2

Formal Errors L3

Estimated L2 Uncertainty

Stratified with wind speed

Remote Sensing Systems www.remss.com

Estimated L2 Uncertainty stratified with SST

Remote Sensing Systems www.remss.com

Estimated L3 Uncertainty

Estimated L3 Uncertaint www.remss.com

Estimated L3 Uncertainty open ocean + strict Q/C

Empirical L3 Uncertainty triple collocation map (AQ – HYCOM – ARGO)

Estimated L3 Uncertainty

formal versus empirical map

- Possible cancellation or enhancement of systematic errors in certain regions.
- $\circ~$ For example: errors in wind speed and auxiliary fields.
- Improving one source for systematic errors (e.g. auxiliary SST) does not necessarily show as an improvement everywhere.

Summary and Reflections

- We have derived an algorithm for estimating formal uncertainties to our physical Aquarius salinity retrieval algorithm.
- 2 major components:
 - 1. Physical error model for each component of the salinity retrieval.
 - 2. Running perturbed retrievals: sensitivity of SSS to the various parameters.
- The physical error model is developed off line.
 - Will be delivered as collection of look-up tables.
 - Some components need information from ground truth salinity (HYCOM)
 - Tied to physical components of retrieval algorithm.
- Keep track of uncertainty in each parameter.
- Essential to separate random and systematic uncertainties.
 - Propagate differently when forming L3 averages form L2 observations.
- Results for both L2 and L3 uncertainty estimate compare very well with empirical uncertainty estimates from ground truth.
 - Triple collocation