

Aquarius Scatterometer Calibration and RFI Status

Alex Fore, Simon Yueh, Wenqing Tang, Akiko Hayashi March 2015 Cal / Val Meeting, Santa Rosa Jet Propulsion Laboratory, California Institute of Technology

 $\ensuremath{\mathbb{C}}$ 2015 California Institute of Technology, Government Sponsorship acknowledged

201412 Measured - Model(RC) (dB)

Delta Sigma0 VV [dB]

Amazon γ_0

$$\gamma_0 = \frac{\sigma_0}{\cos(\theta_{inc})}$$

- PALSAR found γ₀ values in the Amazon stable across 20-45 degrees in incidence angle*
 - Wet-dry seasonal difference of ~ 0.27 dB**
 - Wet season is approx. Nov-April.
- Best estimates are:
 - HH ~ -6.28 dB (std 0.18)
 - HV ~ -11.15 dB (std 0.21)
 - Not clear which season this is from!

**M. Shimada. Long-term stability of I-band normalized radar cross section of amazon rainforest using the jers-1 sar. Canadian Journal of Remote Sensing, 31(1):132–137, 2005.

RAP correction is range antenna pattern correction

Regions used in γ_0 Analysis Include data in blue polygon that not in black polygon

PALSAR Found $\gamma_0^{HH} = -6.28 \text{ dB}$ and $\gamma_0^{HV} = -11.15 \text{ dB}$ Histograms of Aquarius γ_0 For the Three Beams

Amazon Gamma 0 HH [dB]

Bias compared to PALSAR PALSAR values: HH: -6.28 dB; HV: -11.15 dB

Asc / Dec	Beam 1	Beam 2	Beam 3
All HH	0.00	0.00	0.05
Ascending HH	0.03	0.00	0.03
Descending HH	-0.03	0.01	0.13
All VV	-0.05	0.01	0.07
Ascending VV	-0.03	0.00	0.03
Descending VV	-0.08	0.03	0.06
All HV	0.04	0.14	0.07
Ascending HV	0.07	0.13	0.03
Descending HV	0.02	0.16	0.13

No significant ascending / descending difference

SCAT Speed compared to SSMI/S

CAP Speed compared to SSMI/S

Wind Speed Bias/STD as compared to SSMI/S

RFI Flag is 10 or 11

2 or more samples of 8 removed from the block average

H-Pol Severe RFI SCAT_Flag Count For 2012

stdev = 21.020 avg = 11.061

		1		the second s	
D	20	40	60	80	100
		% of Occ	curences		

RFI Flag is 10 or 11

2 or more samples of 8 removed from the block average

H-Pol Severe RFI SCAT_Flag Count For 2013

stdev = 22.161 avg = 11.723

RFI Flag is 10 or 11

2 or more samples of 8 removed from the block average

H-Pol Severe RFI SCAT_Flag Count For 2014

stdev = 21.851 avg = 11.578

0	20	40	60	80	100
		% of Occ	curences		

Summary

- Aquarius continues to provide a well-calibrated source of L-band backscatter
 - It has been extremely stable over 3 years of operation
 - It will provide a reference calibration for new missions such as SMAP
- Aquarius has proven an L-band scatterometer can provide quality ocean winds
- Aquarius scatterometer RFI mitigation statistics did not change much from 2013 to 2014, but there was some large change in the western US from 2012 to 2013.

Histogram of CAP vs SSMI/S Speed

