Radiometer RFI Algorithm and Parameter Tuning

Paolo de Matthaeis

NASA Goddard Space Flight Center, Greenbelt, MD

Aquarius Calibration/Validation Meeting

Santa Rosa - March 31, 2015

RFI Detection Algorithm

RFI Detection Algorithm Thresholds

- Two thresholds:
 - $T_m = g \, \sigma_s \, \tau_m(\text{lat}, \text{lon})$ for removing outliers
 - $T_d = g \, \sigma_s \, \tau_d(\text{lat}, \text{lon})$ for RFI flag decision
- Other two parameters:
 - W_m = width of RFI detection averaging window
 - W_d = width of RFI-by-association window
- g = g(beam, pol) is the gain used in the conversion from short accumulations to antenna temperatures
- τ_m , τ_d , W_m and W_d tunable by geographical location (ocean, land, etc.)
- σ_s corresponds to the standard deviation of the measured antenna temperature

- Analysis of τ_m , τ_d , W_m and W_d influence on RFI detection and retrieved salinity
- Proposed approach for parameter tuning
- Discussion
- Additional issues

- Need for several different regions for parameter tuning:
 - RFI-free ocean
 - ocean with low RFI
 - ocean/land/ice regions
 - RFI-free land
 - Iand with low RFI
 - strong RFI regions
 - sea ice

Selection of RFI-free Ocean

- Blue corresponds to RFI-free ocean
- Criteria for RFI-free ocean
 - water fraction greater than 99.99%
 - ascending/descending difference regions excluded
 - standard deviation of T_A smaller than 1.5

Variation of FAR and $T_A - T_F$ vs. W_d (currently $W_d = 5$)

Variation of T_F and **SSS vs.** W_d (currently $W_d = 5$)

W_d Parameter Analysis, Effect on FAR and $T_A - T_F$

W_d Parameter Analysis, Effect on T_F and SSS

W_d Parameter Analysis in Strong RFI Regions

 $W_d = 5$

 $W_d = 0$

W_d Parameter Analysis, Summary

- Using $W_d = 5$ increases the FAR over RFI-free ocean
- A small bias of up to 1 mK in T_F is related to the FAR over RFI-free ocean, most likely due to the small asymmetry of the statistical distribution of the measurement values
- The bias in T_F translates into a very small bias in the salinity
- Reducing the FAR would reduce these biases
- A value of $W_d = 2$ is proposed for RFI-free ocean

Variation of FAR and $T_A - T_F$ vs. W_m

Variation of T_F **and SSS vs.** W_m

August 1, 2013 – August 7, 2013 RFI-free ocean

W_m Parameter Analysis, Smaller W_m

W_m Parameter Analysis, Larger W_m

Variation of FAR and $T_A - T_F$ vs. τ_d and τ_m

Variation of T_F and SSS vs. τ_d and τ_m

W_m , τ_d and τ_m Parameter Analysis, Summary

- Increasing W_m can be beneficial to decrease the FAR in homogeneous areas such as RFI-free ocean
- Threshold τ_m has minor influence but should not be too small (at least equal to 1, currently 1.5)
- τ_d is the most critical parameter for RFI detection

Re-evaluation of σ_s **Parameters**

values of σ_s are chosen to yield a FAR over RFI-free ocean uniform across all beams and polarization channels:

	V	V+H	V-H	Н
Beam 1	0.558	0.551	0.540	0.532
Beam 2	0.543	0.562	0.548	0.538
Beam 3	0.552	0.548	0.554	0.546

- this choice is based on $W_d = 5$, and, if W_d is modified, the FAR will change
- **D** better choose σ_s independently of W_d , then tune τ_d to obtain the desired FAR
- values of σ_s can be chosen equal to standard deviation of 1.44 s T_A averages:

	V	V+H	V-H	Н
Beam 1	0.668	0.679	0.664	0.638
Beam 2	0.657	0.699	0.680	0.651
Beam 3	0.656	0.717	0.695	0.673

Standard Deviation of T_A

Tuning of vs. τ_d over RFI-free Ocean

- ~ 4 % FAR (one mis-flagged sample) for $W_d = 5$ corresponds to ~ 0.8 % FAR for $W_d = 0$
- ~ 0.8 % FAR is chosen for $W_d = 0$, τ_d would be tuned to ~ 3 (currently $\tau_d = 4$)
- effect of T_f and salinity is minimal

Tuning Procedure over RFI-free Ocean

- **1.** Set $W_d = 2$
- 2. Set σ_s equal to the value of the T_A standard deviation (over 1.44 s)
- 3. $\tau_m = 1.5$ remains unchanged
- 4. Simulate RFI response for different values of threshold τ_d
- 5. Select value of τ_d that yields desired FAR
- 6. Set $W_d = 25$?
- 7. Analyze changes in T_F and SSS (sample data set)

Tuning Procedure over Ocean with Low RFI

- **1.** Set $W_d = 5$
- 2. Set σ_s equal to the value of the T_A standard deviation (over 1.44 s)
- 3. $\tau_m = 1.5$ and $W_d = 20$ remain unchanged
- 4. Simulate RFI response for different values of threshold τ_d for two weeks in 2013 and 2014
- Compare results in North Atlantic RFI regions from 2013 (RFI present) and 2014 (no RFI present)

- 1. Chris Ruf and David Chen algorithm to determine τ_d
- 2. RFI detection for isolated cases with non-impulsive RFI (e.g., Japan, France)

Extra Slides

Variation vs. σ_s

Variation vs. σ_s

