Toward a wind speed dependent Rain Impact Model

Kyla Drushka¹, March Jacob², Bill Asher¹, Linwood Jones²

¹. Applied Physics Laboratory ². University of Central Florida

2020 OSST Virtual Workshop 7 April 2020
The Rain Impact Model (RIM) was developed at UCF to quantify the vertical salinity gradients generated by rain.

Salinity profile during/after rain:

Rain generates near-surface freshening → vertical salinity gradients in the upper few meters of the ocean.

Satellite validation: Satellites measure salinity at ~1 cm depth, in situ platforms used to validate satellite salinity measure at ~1-5 m depth.

Hydrological cycle: e.g., understanding water cycle changes, estimating rainfall from satellite SSS.
RIM predicts near-surface freshening from satellite rain measurements using a diffusion model

\[S(z, t) = S_0 d_0 \left(d_0 + \frac{RIF}{\sqrt{K_z t}} e^{-z^2/(4K_z t)} \right)^{-1} \]

- \(S(z, t) \): salinity at depth \(z \), time \(t \)
- \(S_0 \): initial bulk salinity (from HYCOM)
- \(d_0 \): characteristic mixing depth
- \(RIF \): “rain impulse function” = rain accumulation (\(R \), from CMORPH) integrated over \(d_0 \)
- \(K_z \): vertical eddy diffusivity coefficient

- \(K_z \) estimated from in situ measurements of \(O(1-10) \) km scale rain events
- \(K_z \) assumed to be constant in RIM: \(1 \times 10^{-4} \) m\(^2\)/s

Santos-Garcia et al., 2014, based on Asher et al., 2014
RIM works well in many cases
RIM predictions of SSS are included in the Aquarius V5 product

Santos-Garcia et al., 2014
... but RIM often over-predicts freshening

![Graph showing HYCOM, Aquarius, and RIM data]

- **Low wind**: RIM works
- **Rain rate**
- **Wind speed**
- **High wind**: RIM too fresh

RIM output example

Count (concatenated data)
... but RIM often over-predicts freshening

HYCOM vs Aquarius

RIM vs Aquarius

HYCOM is too salty

RIM is too fresh

* Stats for Pacific ITCZ data, 2012, rain rate > 0.5 mm/hr only
RIM works at wind speeds < 5 m/s
Because it is tuned for low/moderate winds, so it doesn’t mix away freshwater in higher wind cases

Distribution of ΔS: all cases

Distribution of ΔS: winds < 5 m/s

This motivates developing a wind-dependent version of RIM

RIM fresh bias
Median $\Delta S_{\text{RIM-Aquarius}}$ is -0.25 psu

Low winds: no bias
Median $\Delta S_{\text{RIM-Aquarius}}$ is -0.06 psu

* Stats for Pacific ITCZ data, 2012, rain rate > 0.5 mm/hr only
Our goal: improve RIM by introducing a wind- and rain-dependent vertical diffusivity (K_z)

Step 1: Determine K_z for different wind speeds & rain rates from idealized modeling using the Generalized Ocean Turbulence Model (Burchard 2001, Drushka et al 2016)

Forcing:
Use a range of rain accumulation and wind speed values

Salinity response:
estimate $K_z(R,U,t)$ by fitting a diffusion model

Rain accum. 0 to 5mm

Wind speed: 0 to 10 m/s

$S(z)$

depth

Time 1
Time 2
Time 3

time
K_z is strongly dependent on wind speed, weakly dependent on rain rate, and also varies with time.

Parameterized K_z:
$$\ln(K_z) = (a_0 + a_1 U + a_2 U^2)(b_1 R_0^{b_2 U} + b_3)$$

- U = wind speed
- $R = $ rain accum.
- $a_i, b_i =$ time-varying coefficients from fits to model output

Left Panel:
- Constant K_z used in original RIM
- Color: rain accum.
- Time: 1 hour after rainfall

Right Panel:
- Color: wind speed
- Rain accum.: 2 mm

Graphs:
- Wind speed, m/s vs. K_z, m2/s
- Time, hours since rain vs. K_z, m2/s
Parameterized K_z implemented into RIM (called “PRIM”)

Not enough freshening (PRIM looks too much like HYCOM)

HYCOM vs Aquarius

PRIM vs Aquarius

Rain rate, mm/hr

* Stats for Pacific ITCZ data, 2012, rain rate > 0.5 mm/hr only

Count (concatenated data)
PRIM under-predicts freshening. Why?

\[S(z, t) = S_0 \left(1 + \frac{R}{\sqrt{K_z t}} \right)^{-1} \]

- This term is too small
- \(K_z \) too large?
- \(R \) (rain accumulation) too small?

\(K_z \) parameterization was developed using a 1-d model that is consistent with small-scale rain events having scale \(O(1-10) \) km

- How well does it represent the large scales (25 – 100 km) measured by satellites used in RIM?
- How is salinity mixing on “in situ” and satellite scales related?

Satellite rain products represent scales \(>O(100) \) km, 60-90 min averages

- \(R \) observed over a satellite footprint << \(R \) at a point
Can tweaking K_z in PRIM teach us about scales of salinity mixing?

PRIM with $K_z = K_z \times 0.01$

Too much freshening

Some improvement: PRIM looks more like Aquarius

PRIM with $K_z = K_z \times 0.1$

Rain rate, mm/hr

Salinity, PSU

HYCOM

Aquarius

PRIM

Rain rate, mm/hr

Salinity, PSU

HYCOM

Aquarius

PRIM
Can tweaking K_z in PRIM teach us about scales of salinity mixing?

Scaling K_z by a factor of between 0.1 and 0.01 will make RIM “work”.

This is consistent with the ratio of scale at which K_z was developed (1-10 km) & scale of satellite rain (100 km).
Summary

1. RIM **over-predicts rain freshening** at winds > 5 m/s
 - RIM has no wind speed dependence

2. We developed parameterized RIM (PRIM):
 - PRIM parameterizes K_z based on wind (and rain, time)
 - PRIM **under-predicts freshening**
 - Adjusting K_z suggests that the rain we observe/model on scales of individual rain events is mixed away 10-100x faster than rain observed by satellites, consistent with their relative size (1-10 km versus ~100 km)

Future work

- Further refinement of RIM (using IMERG rain, Argo instead of HYCOM)
- Exploration of K_z scaling relationships
- A PRIM product for SMAP? OSST suggestions?